

Analyse 1

Présentation

Description

Séries numériques

- 1. Introduction, Sommes partielles et techniques de sommation
- 2. Séries à termes positifs, théorème de comparaison
- 3. Séries à termes quelconques : convergence absolue, critère des séries alternées

Illustrations : notion d'erreur numérique, représentation des nombres en machine

Topologie des espaces vectoriels normés

- 1. Normes et EVN, Comparaison de normes
- 2. Suites dans un EVN et convergence
- 3. Topologie : ouverts, fermés, adhérence, densité
- 4. Limite, Continuité de fonctions, compacité
- 5. Applications linéaires entre EVN : continuité, normes subordonnées

Illustrations : méthodes itératives de résolution de systèmes linéaires, conditionnement de matrices

Calcul différentiel en dimension finie

- 1. Notion de différentielle pour les fonctions de plusieurs variables
- 2. Dérivées partielles d'ordre 1 et d'ordre supérieur
- 3. Développement de Taylor, Inégalité des accroissements finis
- 4. Théorème d'inversion locale, théorème des fonctions implicites.

Illustration numérique : Méthode de Newton pour la résolution de systèmes d'équations non linéaires.

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts) :

- La notion de série numérique et la notion convergence de série numérique.
- La notion de différentielle d'une fonction de plusieurs variables, de dérivée partielle et du lien avec la différentielle
- Les notions de normes, de convergence de suite dans un espace vectoriel normé, de limite, de notions topologiques simples : ouverts, fermés, compacité

L'étudiant.e devra être capable de :

Mobiliser les principaux théorème du cours pour :

- Etudier la convergence d'une série numérique par majoration, comparaison
- Etudier la différentiabilité d'une fonction de plusieurs variables, en faire un développement limité
- Manipuler la notion de norme, étudier la topologie d'un sous-ensemble d'un EVN, étudier la convergence de suites ou les limites de fonctions à valeurs dans un EVN.

Pré-requis nécéssaires

Cours d'analyse de 1ere année : fonctions, limite, continuité, dérivabilité en une dimension, algèbre linéaire (espaces vectoriels, applications linéaires, matrices, vecteurs)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

