

Optique

Présentation

Description

Chapitres du Cours:

Le cours se décompose en plusieurs chapitres clés pour vous fournir une compréhension complète de l'optique géométrique :

1-Introduction à l'Optique Géométrique

Définition et importance de l'optique géométrique. Historique et développements récents dans le domaine.

2-Lois Fondamentales de l'Optique Géométrique

°Loi de la réflexion.

°Loi de la réfraction (loi de Snell-Descartes).

°Principe de Fermat et ses applications.

3-Propagation de la Lumière dans les Milieux Homogènes et Inhomogènes

°Étude de la propagation rectiligne de la lumière.

[°]Analyse des milieux homogènes et inhomogènes.

[°]Effets des variations d'indice de réfraction.

4-Réflexion et Réfraction aux Interfaces

*Comportement des rayons lumineux aux interfaces entre différents milieux.

Réflexion totale interne et ses applications.

°Étude des prismes et des lentilles.

5-Systèmes Optiques Simples

°Miroirs plans et sphériques.

[°]Lentilles minces et épaisses.

[°]Formation d'images par des systèmes optiques simples.

6-Systèmes Optiques Complexes

°Combinaison de lentilles et de miroirs.

[°]Analyse des aberrations optiques.

*Conception et optimisation des systèmes optiques complexes.

7-Applications Pratiques de l'Optique Géométrique

*Instruments optiques courants (microscopes, télescopes, appareils photo).

Applications en photonique et en télécommunications. Études de cas et projets pratiques.

Ce cours vise à vous fournir une compréhension approfondie des concepts fondamentaux de l'optique géométrique et à développer vos compétences analytiques et pratiques pour résoudre des problèmes complexes dans ce domaine.

Objectifs

Objectifs du Cours:

À la fin de ce cours, vous serez capable de :

- 1- Comprendre les principes fondamentaux de l'optique géométrique, y compris les lois de la réflexion et de la réfraction.
- 2- Analyser le comportement des rayons lumineux à travers différents milieux et interfaces.
- 3- Utiliser les outils mathématiques pour modéliser et résoudre des problèmes d'optique géométrique.
- 4- Appliquer les concepts d'optique géométrique à la conception et à l'analyse de systèmes optiques simples et complexes.

4- Interpréter les résultats expérimentaux et théoriques pour évaluer la performance des systèmes optiques.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

