

Mécanique avancée

Présentation

Description

- Limites du calcul au 1er ordre (ou linéaire)
- Non linéarité géométrique

Analyse locale : Flambement, Voilement, Torsion avec gauchissement, déversement

Analyse globale : méthode de Rayleigh Timoshenko

- Non linéarité des matériaux

Plasticité : critères et lois élémentaires, plastification des sections de poutres, analyse limite des structures Visco-élasticité : principaux modèles, lois de comportement de relaxation et de fluage. Calcul des déformations différées par la transformation de Laplace

-Méthode des éléments finis

Formulation variationnelle (Principe des Puissances Virtuelles)

Discrétisation en éléments finis

Assemblage et résolution

- formulation mécanique des éléments :

Poutre

Plaque-coques

Solide

- Calcul statique, dynamique (détermination des fréquences propres), instabilité

Construction métallique:

- technologie de construction métallique
- comportement du matériau acier
- calcul élastique et plastique des ossatures,
- analyse globale au premier et au second ordre,
- prise en compte des instabilités a différentes échelles: locale, élément ou globale
- prise en compte des imperfections
- approche selon les états limites

- vérification des sections
- vérification des éléments
- conception et calcul des assemblages,

Objectifs

A la fin de ce module, l¿étudiant devra avoir compris et pourra expliquer (principaux concepts):

Les limites d'autilisation de la mécanique linéaire Les différents phénomènes d'ainstabilité des structures : relatifs aux sections, aux éléments et à la structure alobale

Le calcul plastique des structures

Le calcul visco-élastique, les principaux modèles de visco-élasticité, leur application au fluage, à la relaxation et au calcul des déformations différées

La modélisation par la méthode des éléments finis Les formulations mécaniques de type poutre, plaque et coque, solide

Réaliser le calcul dune structure à laide d'eun code d'éléments finis

La conception et le dimensionnement dééléments déossatures métalliques selon IEC3. (poutres, poteaux, portiques, treillis, assemblages)

L'étudiant devra être capable de :

- .Déterminer la charge d'instabilité globale dune structure
- .Déterminer les efforts locaux d'instabilités locales
- .Déterminer la charge de ruine plastique dune structure
- .Faire le choix et mener une analyse globale de l¿ossature
- .Choisir et prédimensionner des éléments d'ossatures

.Vérifier et optimiser des éléments d'une structure métallique conformément à l'EC3 selon le principe des états limites

Pré-requis nécéssaires

Cours de mécaniques des structures. Cours de mécanique du solide et structures linéaires

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

