

Transmission Mécanique de Puissance

Présentation

Description

Partie I - CAO

- éléments pour l'utilisation performante des outils CAO (organisation des données ; modélisation descendante avec l'utilisation de squelettes)
- formation au logiciel 3DX

Partie II - Travaux dirigés

- trains planétaires (raison basique, rapport de transmission, étude des efforts, rendement énergétique)
- géométrie détaillée des dentures à flancs en développantes de cercle (taillage, déports, dentures hélicoïdales, conduite, interférences)
- dimensionnement des dentures à flancs en d.d.c (pression superficielle, contrainte de flexion)

Partie III - Projet

En groupe de 2 ou 3 étudiants

A partir des données suivantes :

- . Contexte d'utilisations, géométrie
- . données d'entrée et de sortie
- . durée de vie souhaitée

Chaque groupe établit :

- une notice de calcul complète de l'ensemble du mécanisme (dentures, axes, liaisons complètes, liaisons pivots)
- un dessin en coupe du mécanisme
- une maquette numérique du projet

A l'issue de ce module, les étudiants seront capables d'analyser un cahier des charges d'un réducteur à engrenages, de concevoir le réducteur et d'établir la notice de calcul associée, de communiquer leur solution avec une maquette numérique paramétrée.

Pré-requis nécéssaires

Bases de conception mécanique:

- fabrication (soudage, usinage conventionnel)
- liaisons complètes (clavettes, cannelures, vis, etc.)
- liaisons pivots (conception et calcul des montages)
- bases de dessin technique
- calculs de statique/dynamique des solides
- calculs de résistance des matériaux (poutres en torsion, flexion)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Objectifs

