

Modelling tools and Optimization

5 crédits

Hourly volume

Introducing

Description

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

- Various approaches to analyze and evaluate the performances of discrete event system DES,
- Various types of modelling adapted to the problems considered (deterministic or stochastic models, numerical and combinatorics optimization models, models of concurrency)
- Algorithms available to solve these problems.

The student will be able to:

Model and solve operational research problems (optimisation, linear programming, graphs, stochastic process) and discrete-event systems problems.

Model stochastic systems, such as a network of queues , using Markov chains. Compute their stationary performance measures, and dimension their capacity.

Model a DES by Petri net, analyse the properties of the Petri net by various methods of analysis (exhaustive and structural)

Necessary prerequisites

Linear Algebra, Differential Calculus, Probabilities, Dynamic systems, Basic concepts in propositional logics and in Petri Nets.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

