

Computer experiments & Stochastic Calculus with applications to PDE modeling

Hourly volume

ECTS 3 crédits

Introducing

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts) the following.

Computer Experiment

• Metamodelling for optimization / uncertainty quantification of a computer code

· At least the two main families of metamodels : chaos polynomials and Gaussian processes

· Kernel customization to account for external knowledge

· Design of computer experiments

· Global sensivity analysis

Stochastic calculus

 \cdot The brownian motion as well as the Wiener integral and Itôis formula

• The relationship between a stochastic differential equation and its Fokker-Planck equation.

• The rewriting of a parabolic or elliptical problem using a well-chosen stochastic process.

The student should be able:

Computer Experiments

- \cdot At a theoretical level, to do computations for:
- covariance kernels and Gaussian process
- · ANOVA decomposition, Sobol indices

 $\cdot\,$ At a practical level, to perform the complete methodology for analyzing a computer code

- \cdot design of experiments
- \cdot metamodel construction / evaluation

- application to optimization / uncertainty quantification of a computer code

Stochastic calculus

• Derive simple models on noise filtration and stochastic control.

• Numerically implement the resolution of a parabolic or elliptic equation using a particle-based probabilistic method.

Necessary prerequisites

Gaussian vectors. Probability. ODE. Basics of PDE.

Practical info

Location(s)

Toulouse

