

Energy and Processes

ECTS 5 crédits

Hourly volume

43h

Introducing

Description

preliminary design of compressors and expansion devices,

- design a gas liquefaction plant
- participate in the implementation of a wind energy area development and a site photovoltaic,
- participate in the implementation of a biogas network.

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

- the world context of power-generating systems, which produces a net power output from a fossil, nuclear or renewable energy source.
- the legal and technical context of the various forms of renewable energy (wind, solar photovoltaic, biomass ...),
- the different thermodynamic cycles associated to the power generation systems, the refrigeration and heat pump systems and the gas liquefaction.
- the use of energy and exergy balances for these thermodynamic systems in order to optimize their operation

Necessary prerequisites

Thermodynamic I3BETH11

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Q

Toulouse

The student will be able to:

- design a given steam power plant, including the choice of working fluid temperatures, pressures and the determination of fluid working flows plus the pre-sizing of compressors and turbines
- design a refrigeration system, including the choice of working fluid temperatures, pressures and the determination of fluid working flows plus the

