

4e ANNEE AE ORIENTATION IS SEMESTRE 7

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Modélisation multiphysique

Présentation

Description

- Introduction à la mise en place de modèles à paramètres localisés (OD/1D) : approche réseau en modélisation multidomaine (électricité, mécanique, hydraulique, thermique), langage Modelica, modélisation incrémentale et choix du niveau de modèle, calcul de paramètres par approches énergétiques.
- Implémentation et analyse de modèles à paramètres localisés (OD/1D) : modèles Modelica, modèles Simulink de type schémas blocs, approches causales et acausales, bond graph, résolution numérique dans Python.
- Modélisation des actionneurs électromagnétiques : calcul de champs magnétique (analytique et FEM) et d'inductances, calcul d'efforts, modélisation d'actionneurs mécatroniques.
- Modélisation des structures et systèmes 3D mécaniques : introduction, systèmes mécaniques multicorps, modélisation et éléments finis sous Python et Abaqus.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- Les principaux concepts de la modélisation de systèmes multiphysiques à paramètres localisés (OD/1D) ou distribués (3D).
- Les approches réseaux en modélisation multidomaines (électrique, mécanique, hydraulique, thermique), la modélisation acausale/causal, les bonds

graphs, les méthodes de calcul par éléments finis en électromagnétique et en mécanique.

L'étudiant devra être capable de :

- Mettre en place des modèles OD/1D (électrique, mécanique, hydraulique, thermique), 2D/2D multicorps ou 3D (électromagnétique, mécanique) pour des systèmes mécatroniques.
- Utiliser des logicielles de programmation comme Python et des plateformes logicielles OD/1D comme Dymola/Modelica, AMESim, Simulink et 3D comme FEMM, Patran-Nastran ou Abagus

Pré-requis nécéssaires

Lois de Kirchhoff et électrocinétique, notion de travail/énergie et puissance, notion de pression en hydrostatique des fluides, conduction et convection en transfert thermique.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Architectures des chaines de puissance des systèmes technologiques

Présentation

qualité des informations sera également donnée.

Description

I4ISME71-1 Architecture des transmissions de puissance Enseignement centré sur les systèmes de puissance à finalité mécanique (actionneurs, entraînements, chaines de propulsion, etc.). Découpage selon 3 domaines: hydraulique, électrotechnique et mécanique avec analyse des composants technologiques permettant de remplir les fonctions de : dosage, distribution, transformation, conditionnement et gestion. Exemples applicatifs couvrant les domaines de la mobilité/BTP (véhicule électrique, aéronautique, engins de chantier).

14ISME71-3 CAO et jumeau numérique

Travaux portant sur une maquette CAO d'un vélo couché-caréné électrique dont le comportement de conduite est co-simulé (suspension/propulsion).

14ISME71-5 Informatique et électronique embarquées

- Analyse de capteur (ex. sonde de température),
- Réalisation de montage intégrant un amplificateur opérationnel,
- Prise en main du microcontrôleur de la famille des STM32,
- Prise en main de différents modules de transmission RF.
- Mise en place de toute un architecture matérielle et logicielle pour réaliser une communication sans fils de la température.

l4ISME71-6 Formation à la recherche documentaire Une formation sera dispensée sur les canaux de diffusion scientifiques (bases documentaires, journaux), les méthodologies de recherche et outils associés. Une sensibilisation aux droits d'auteurs et à l'analyse de la

Objectifs

Le module comporte 6 composantes:

- 1 Architecture des transmissions de puissance
- 2 Analyse de mécanismes (AE uniquement)
- 3- CAO et jumeau numérique
- 4 Ouverture aux réseaux industriels
- 5 Informatique et électronique embarquées
- 6 Formation à la recherche documentaire et projet recherche

Les objectifs sont propres à chaque composante:

I4ISME71-1 Architecture des transmissions de puissance L'étudiant pourra:

- analyser un schéma de puissance mécanique/hydraulique/électrique d'un point de vue architectural et fonctionnel,
- effectuer la synthèse d'une architecture de puissance mécanique/hydraulique/électrique à partir d'exigences fonctionnelles.

14ISME71-2 Analyse de mécanismes

L'étudiant sera en mesure de lire des plans de pièces et d'assemblages mécanique et d'en analyser la cinématique utile à la réalisation d'un mécanisme.

14ISME71-3 CAO et jumeau numérique

L'étudiant mettra en œuvre une co-simulation entre maquette CAO multi-corps et environnement multiphysique 0D/1D en validation préliminaire.

I4ISME71-4 Ouverture aux réseaux industriels L'étudiant aura acquis les bases principales des

réseaux et protocoles industriels.

I4ISME71-5 Informatique et électronique embarquées L'étudiant aura compris:

- les concepts fondamentaux associés à une chaîne de transmission numérique de la capture des informations physique, son traitement à sa transmission sur réseau sans fils.
- les différents paramètres à prendre en compte pour mettre en forme un signal analogique,
- les différents paramètres à prendre en compte pour choisir une technologie de transmission sans fils principe,
- les techniques de programmation de base sur un microcontrôleurs STM32.

Il sera également capable:

- d'analyser un problème et de concevoir une architecture matérielle et logicielle de transport de données basée sur une étude de cahier des charges,
- de choisir les technologies adéquates pour la transmission parmi des équipements basiques ou plus évoluées comme des module XBee ou GSM.
- de lire une datasheet pour comprendre le fonctionnement de capteurs électroniques simples,
- de réaliser le montage électronique pour mettre en forme le signal issu du capteur.

14|SE|11-6 Formation à la recherche documentaire L'étudiant sera en mesure de:

- collecter des documents pertinents et fiables, d'un niveau académique/recherche en utilisant des sources variées,
- présenter sa synthèse bibliographique sous forme structurée et normée.

Cours d'informatique de 1ère année.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

I4ISME71-1 Architecture des transmissions de puissance Connaissances technologiques de base en mécanique car la mise à niveau (I4ISEI11-2 Analyse de Mécanismes) est succincte. Des support d'auto-formation seront disponible en ligne.

14ISME71-5 Informatique et électronique embarquées

Remise à niveau AE

Présentation

Description

Rappels des 3 lois de Newton, types de force, principe des travaux virtuels, énergie potentielle et cinétique. Modélisation de systèmes simples, bilan des actions mécaniques extérieures, méthode de résolution Liaisons cinématiques examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin du module, l'étudiant doit savoir :

- Modéliser un système plan en vue d'une étude statique ou dynamique
- Résoudre un problème de dynamique en choisissant et appliquant la bonne méthode
- Comprendre un schéma cinématique

Pré-requis nécéssaires

Mécanique du point

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes :

Outils de modélisation

Présentation

Description

Optimisation différentiable : théorie et pratique

- Rappels de calcul différentiel et introduction à l'analyse convexe
- Exemples industriels et typologie des problèmes d'optimisation
- Notion d'extremum local
- Conditions d'optimalité au premier ordre et second ordre avec ou sans contraintes (égalité et/ou inégalité)
- Algorithmes du gradient, algorithmes de Newton, problèmes de moindres carrés linéaires et non linéaires

Introduction à la programmation linéaire : modélisation par programmation linéaire, algorithme du simplexe, analyse de sensibilité

Modélisation par graphes et description d'algorithmes efficaces pour la recherche de chemins, d'arbres et de flots extrémaux

Applications : problèmes d'affectation, de transport, d'ordonnancement, de planification.

Modélisation stochastique par une chaîne de Markov à temps discret et à temps continu. Calcul de la mesure

transitoire et la mesure stationnaire. Applications aux processus de naissances et de mort, files d'attente markoviennes, réseaux de files d'attente

Modélisation par réseaux de Petri et techniques d'analyse associées. Propriétés des réseaux. Application à des protocoles de communication et systèmes réactifs

Introduction au machine learning. Apprentissage supervisé pour problème de classification et de régression. Modèles interprétables et réseaux de neurones

Objectifs

•

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- différentes approches pour analyser et évaluer les performances de systèmes à événements discrets,
- différents types de modélisation adaptées aux problèmes considérés (modèles déterministes ou stochastiques, modèles d'optimisation numérique et combinatoire, modèles concurrents)
- caractéristiques d'un problème d'apprentissage supervisés (jeux de données, classification/régression, processus d'apprentissage, évaluation), et méthodes/algorithmes basiques pour traiter ces problèmes,
- les algorithmes disponibles pour résoudre ces problèmes.

L'étudiant devra être capable de :

Apprendre à modéliser et résoudre des problèmes de recherche opérationnelle (optimisation, programmation linéaire, graphes, processus stochastiques) et des systèmes à évènements discrets. Modéliser systèmes stochastiques tel qu'un réseau de files d'attente par une chaîne de Markov. Calculer ses mesures de performances stationnaires et dimensionner leur capacité.

Modéliser un SED par réseau de Petri, analyser les propriétés du réseau de Petri par différentes méthodes d'analyse (propriétés générales d'accessibilité et propriétés spécifiques au moyen d'observateur).

Mettre en place un processus d'apprentissage à l'aide de librairies Python existantes, et présenter/expliquer les résultats des modèles obtenus.

Pré-requis nécéssaires

Algèbre linéaire - Calcul différentiel - Probabilités - Systèmes dynamiques (notion d'état)- bases en logique propositionnelle et réseaux de Petri.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Automatique

Présentation

Description

Cet enseignement présente les modèles linéaires à temps discret : modèle entrée/sortie et modèles dans l'espace d'état. Echantillonnage avec bloqueur d'ordre zéro. Critères de stabilité. Passage d'une loi de commande analogique à une loi de commande numérique. Correcteur RST : Régulation et poursuite. Lien avec les méthodes dans l'espace d'état.

Objectifs

Les objectifs de cet enseignement sont de connaître les techniques et méthodes de commande numérique pour cela il faut:

- Savoir identifier et modéliser un système discret et un système échantillonné
- Savoir évaluer les critères de performances d'un système discret et d'un système échantillonné
- Savoir mettre en place et valider un correcteur pour un système discret ou échantillonné

Commande des systèmes linéaires continus

- GM-IS : Etude des systèmes

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

- AE-SE : Systèmes bouclés Signal

Architecture des chaines d'information des systèmes techno

Présentation

Description

- 1- Ouverture aux réseaux industriels Introduction générale sur les réseaux industriels et les protocoles couramment utilisés.
- 2- Informatique et électronique embarquées
- Analyse de capteur (ex. sonde de température),
- Réalisation de montage intégrant un amplificateur opérationnel,
- Prise en main du microcontrôleur de la famille des STM32
- Prise en main de différents modules de transmission RF,
- Mise en place de toute un architecture matérielle et logicielle pour réaliser une communication sans fils de la température.
- 3- Formation à la recherche documentaire Une formation sera dispensée sur les canaux de diffusion scientifiques (bases documentaires, journaux), les méthodologies de recherche et outils associés. Une sensibilisation aux droits d'auteurs et à l'analyse de la qualité des informations sera également donnée.

Objectifs

Le module comporte 3 composantes avec leurs propres objectifs:

1- Ouverture aux réseaux industriels L'étudiant aura acquis les bases principales des réseaux et protocoles industriels.

- 2- Informatique et électronique embarquées L'étudiant aura compris:
- les concepts fondamentaux associés à une chaîne de transmission numérique de la capture des informations physique, son traitement à sa transmission sur réseau sans fils.
- les différents paramètres à prendre en compte pour mettre en forme un signal analogique,
- les différents paramètres à prendre en compte pour choisir une technologie de transmission sans fils principe,
- les techniques de programmation de base sur un microcontrôleurs STM32.

Il sera également capable:

- d'analyser un problème et de concevoir une architecture matérielle et logicielle de transport de données basée sur une étude de cahier des charges,
- de choisir les technologies adéquates pour la transmission parmi des équipements basiques ou plus évoluées comme des module XBee ou GSM,
- de lire une datasheet pour comprendre le fonctionnement de capteurs électroniques simples,
- de réaliser le montage électronique pour mettre en forme le signal issu du capteur.
- 3- Formation à la recherche documentaire L'étudiant sera en mesure de:
- collecter des documents pertinents et fiables, d'un niveau académique/recherche en utilisant des sources variées.
- présenter sa synthèse bibliographique sous forme structurée et normée.

Pré-requis nécéssaires

2- Informatique et électronique embarquées Cours d'informatique de 1ère année.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Remise à niveau GM

Présentation

Description

Le parcours pédagogique mêle cours et Travaux Dirigés (TD) et se présente comme suit :

- chapitre 1 : Introduction aux réseaux informatiques et à l'Internet
- chapitre 2 : Adressage dans les réseaux informatiques et dans l'Internet
- TD1: adressage dans les réseaux informatiques
- TD2 : architecture de communication
- chapitre3 : Architecture de communication de l'Internet
- TD3: architecture TCP/IP de l'Internet

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Au terme de ce cours, les étudiants seront en mesure d'expliquer :

- les principes de fonctionnement des réseaux informatiques et leur fonction d'acheminement de données
- l'organisation de l'Internet et l'acheminement de données dans l'Internet
- l'adressage et le nommage dans les réseaux informatiques et l'Internet
- les notions de protocole, service, couche de communication et architecture de communication
- l'architecture TCP/IP de l'Internet et décrire les services des principaux protocoles (IP,TCP,UDP)

Droit

Présentation

Lieu(x)

Toulouse

Description

Le cours de droit est adossé à un support numérique dans Moodle comprenant des éléments de cours, des TD et une Bibliographie + webographie

Les grands axes étudiés sont les suivants :

Les structures juridiques de l'entreprise Les principaux contrats et institutions de la vie des affaires

Le risque et la responsabilité

Objectifs

à la fin de ce cours, les étudiants connaîtront le contexte légal et les implications juridiques de l'activité de l'entreprise

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Finance

Présentation

Description

Le diagnostic financier : Analyse du Bilan. Equilibre financier. Analyse du Compte de Résultat. La capacité d'autofinancement. Ratios.

Décision d'investissement : les Flux Nets de Trésorerie et critères de choix avec ou sans actualisation basés sur la rentabilité économique d'un investissement. examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Être capable de porter un jugement critique sur la santé financière d'une entreprise et d'apprécier la rentabilité d'un investissement.

Pré-requis nécéssaires

Cours de gestion financière de 3°A (connaissance des états financiers de l'entreprise, Bilan et compte de résultats)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes :

Stratégie d'entreprise responsable

Présentation

en œuvre un plan d'action stratégique responsable au regard des enjeux écologiques, économiques et sociétaux.

Description

Les ressources du module de stratégie d'entreprise responsable sont 100% en ligne dans Moodle

Les grands axes étudiés sont les suivants :

Réflexion sur l'ingénieur de demain

Définitions, enjeux et limites de la stratégie d'entreprise conventionnelle

La connaissance des marchés

Concevoir et développer une offre durable

Construire une politique de prix juste

Élaborer une communication responsable et efficace

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce cours, les étudiants seront capable de :

- Réaliser un diagnostic du marché et de l'entreprise pour prendre des décisions et se fixer des objectifs stratégiques
- Mobiliser les connaissances sur le marché pour mettre

LV2

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

APS (Activités physiques et sportives)

ECTS 1 crédits

Volume horaire

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

