

DOMAINE ELECTRONIQUE / INFORMATIQUE S7_12 **ECTS**

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Architectures analogiques des systèmes embarqués

Présentation

Description

L'enseignement est décomposé selon trois parties complémentaires :

- Filtrage actif et modélisation des sources de bruit :
- . Identifier les sources de bruit et optimiser le rapport signal sur bruit sur chaque étage dèune chaine de traitement analogique du signal.
- . Construire des filtres à partir du cahier des charges (gabarit) jusqu'à l'aimplantation électronique avec les contraintes de choix et de dérives de composants.
- . Transcrire une fonction de transfert de filtre en fonctions biquadratiques puis la décliner en architecture de filtre analogique actif à base de montages à rétroaction (Sallen Key, Rauch, UAF,¿) ou en synthèse de filtre à capacités commutées.
- . Optimiser l'aordre d'aun filtre en fonction de critères de coût, d'aintégration, de stabilité, de sensibilité.
- Architectures Analogiques pour la transmission de l¿information :
- . Concevoir/Modéliser des architectures électroniques de fonctions non linéaires (valeur absolue, racineur, oscillateurs contrôlés en tension, contrôle automatique de gain, modulateurs/démodulateurs AM et FM, analyseur de spectre) à partir de l'exploitation de non linéarités de composants électroniques.
- . Compenser les effets thermiques, optimiser la chaîne analogique de transmission de l¿information et savoir choisir les composants en fonctions de critères (dérives, bande passante, énergie consommée, niveau d'intégration et puissance à dissiper).

Mettre en place une conception système en prototypant sur des circuits analogiques programmables type FPAA.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- Dimensionner et concevoir des fonctions électroniques analogiques de traitement de l'Einformation (filtrage, amplification, contrôle automatique de gain, oscillateurs contrôlés en tension, modulateurs/démodulateurs AM et FM).
- Optimiser le rapport signal sur bruit dans chaque sous ensemble d'un système embarqué.

Modéliser des architectures robustes aux contraintes d'utilisation (consommation, température à dissiper), aux variations thermiques de l'environnement et aux dispersions de caractéristiques de composants.

Pré-requis nécéssaires

- Module électronique analogique et numérique 2° année
- Module signal
- Savoir utiliser LTSPICE, TINA

Mineure conditionnement du signal de la thématique système. Première partie du cours de 4° année Modélisation des composants et architectures numériques

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes :

examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Modélisation des composants et architectures numériques

Présentation

Description

Les problématiques suivantes seront abordées en détail en cours et travaux pratiques :

- -les phénomènes que subit tout circuit par le biais du matériau semi-conducteur
- -la structure MOS, CMOS et portes logiques
- -la modélisation de transistors (MOS,Bip...) (paramètres sensibles à l'environnement)
- Interrupteurs de puissance MOS et IGBT.
- -l'implémentation CMOS des fonctions logique (High speed, low power, gate clocking)
- -les modèles VHDL de fonctions / systèmes numériques -la synthèse et implémentation FPGA des architectures numériques
- -l'optimisation des performances : (fréquence, consommation, etc. Un accent particulier sera mis sur les techniques d'optimisation très faible consommation de circuits numériques pour un développement durable (green computing) ...)
- -les technologies green computing
- -le fort intérêt de la reconfigurabilité pour de nombreuses applications (ex : stations de base de téléphonie mobile)
- -les architectures numériques pour l'implémentation de l'intelligence embarqué

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

des systèmes électroniques numériques

- -la problématique de l'intégration des circuits électroniques
- -la conception et l'optimisation de performances des architectures numériques, aussi bien en fréquence de fonctionnement qu'en consommation énergétique pour un développement durable;
- -les technologies green computing.
- -le concept et les applications du reconfigurable computing utilisant des FPGA
- -les architectures numériques pour de l'Intelligence Artificielle (IA) embraquée

L'étudiant devra être capable de comprendre les ruptures technologiques futures dans leur vie professionnelle, les modèles des principaux composants électroniques actives et les architecture numériques complexes, ainsi que leur optimisation en vue du développement durable.

Électronique analogique et numérique, architecture

Pré-requis nécéssaires

matérielle 2ème et 3ème année

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

-les modèles des composants électroniques, ainsi que

Infos pratiques

Lieu(x)

Informatique Embarquée – µcontôleur

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

