

4e ANNEE AE ORIENTATION SE SEMESTRE 8

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Chaînes d'acquisition

ECTS

Volume horaire

34h

Présentation

Description

L'enseignement est composé de ces parties :

- Le module électronique développe les principes de conversion d'un signal, où architectures séries et parallèles et spécificités de CAN et CNA sont décrites. Des techniques de compression de données sont présentées, codage type loi en A. Les techniques de dimensionnement d'une chaîne de numérisation d'un signal sont développées en prenant en compte l'estimation du rapport signal sur bruit. Le projet couvre le conditionnement d'un capteur analogique, le pilotage d'un convertisseur A/N, le traitement numérique nécessaire implanté dans un microcontrôleur (loi de commande minimale), jusqu'à la conversion N/A qui pilote un actionneur.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Modélisation et commande d'un système électronique depuis le capteur, la numérisation du signal, les processus de compression, et la transmission vers un actionneur.

Pré-requis nécéssaires

- Cours de 2° année module électronique analogique & numérique et module signal
- Cours de 4° année : Architectures analogiques des systèmes embarqués

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Gestion de l'énergie pour systèmes embarqués

Présentation

Description

Diagramme de Ragone, densités d'énergie et de puissance de diverses sources d'énergie.

Panneaux photovoltaïques,

Principe du circuit MPPT,

Modèle d'un moteur/génératrice électrique CC; relations entre les grandeurs électriques et mécaniques; caractéristiques couple-vitesse; équations électrique et mécanique en régime transitoire; schéma bloc de la machine. Transformateur monophasé; équations de fonctionnement et modèles; schémas équivalents. Redresseurs à diodes monophasé et triphasés; taux d'ondulation; dimensionnement des diodes; facteur de puissance. Hacheurs dévolteurs. survolteurs. réversibles en courant et pont H; mode de conduction continue et discontinue; commande MLI; composants de puissance pour la commutation forcée, calculs de pertes de conduction et de commutation

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- Les caractéristiques des sources d'énergie utilisables sur systèmes embarqués,
- Les caractéristiques des grandeurs dans les réseaux de distribution électrique
- Les architectures des convertisseurs de puissance,
- La modélisation d'un moteur/génératrice électrique basée sur ses grandeurs électriques et mécaniques couplées.
- Le fonctionnement d'un transformateur et son

modèle.

- Les structures et principales caractéristiques des convertisseur AC-DC monophasés et triphasés.
- Les principales structures de hacheurs, leurs propriétés, réversibilités et leur commande.
- Le principe d'une régulation de couple ou/et de vitesse d'une machine CC l'aide d'un hacheur.

L'étudiant devra être capable de :

- Analyser les besoins en énergie d'un système embarqué et de proposer et dimensionner une solution,
- Utiliser les équations électriques et mécaniques couplées pour modéliser un système électro-mécanique
- Analyser un système mécanique et dégager les besoins en matière d'entraînement, le type du convertisseur qui doit être associé à la machine.
- Dimensionner les éléments d'une chaîne de conversion d'énergie électrique qui permet de piloter un actionneur donné.

Pré-requis nécéssaires

Connaissances générales concernant l'électricité, les courants alternatifs, les circuits électriques, l'électronique analogique et numérique ainsi que les outils mathématiques (transformées de Fourier et de Laplace) et les bases de l'automatique (fonctions de transfert et schéma blocs)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit,

évaluation par les pairs...

Infos pratiques

Lieu(x)

Réseaux et temps réel

Présentation

Description

Partie temps réel:

Le module aborde les mécanismes des noyaux temps réel et la conception d'applications sur ces exécutifs.

Partie réseaux:

- Le cours présente tout d'abord les technologies classiques d'interconnexion de réseaux locaux dans l'Internet (répéteur, pont, routeur), et détaille en particulier le routage dans l'Internet (algorithme mis en œuvre au niveau IP et protocoles RIP, OSPF, BGP) et ses évolutions (subnetting et routage sans classe CIDR). Les protocoles ARP, proxy ARP, ICMP et DHCP sont également introduits.
- Le cours présente ensuite les concepts et les techniques associés à la gestion de réseaux locaux virtuels (VLAN) et de réseaux privés virtuels (VPN) et à la gestion des adresses IP privées dans l'Internet (proxy applicatif, NAT).
- Les deux principaux protocoles de Transport de l'Internet (TCP, UDP) sont détaillés dans une troisième partie.
- Les évolutions de l'Internet vers la prise en compte des besoins en multicast, en qualité de service (QoS) et en mobilité sont finalement introduites et la gestion du multicast dans sa version primitive est détaillée.
- Des TP d'administration de réseaux Ethernet et IP sur PC Linux et matériel CISCO illustrent le cours.
- le cours est évalué via un examen écrit

Objectifs

Ce module d'enseignement est constitué de deux volets .

A/ La partie sur les systèmes temps réel présente les systèmes temps réels, les concepts clefs, les applications, contraintes, et enseigne la programmation de ces systèmes en utilisant les services des systèmes d'exploitation temps réels. A l'issue du cours, l'étudiant devra être capable de :

- Mettre en place une méthodologie de conception afin de répondre à une spécification avec des contraintes de temps
- Concevoir des architectures logicielles d'application temps réel
- Dimensionner correctement les différents paramètres des tâches et des moyens de synchronisation et de communication
- Programmer le système en utilisant les services d'un système d'exploitation temps réel et un langage orienté objet
- Mettre au point, simuler et analyser les performances des applications
- B / La parte réseau vise à l'acquisition de connaissances et de savoirs faire en rapport avec :
- les concepts et les techniques de base pour interconnecter des réseaux locaux dans l'Internet : répéteur, pont, routeur,
- les concepts et les techniques avancées pour interconnecter des LAN dans l'Internet : routage, subnetting, VLAN, VPN, proxy applicatif, NAT, ...
- les principaux protocoles de l'architecture de l'Internet TCP/IP: UDP, TCP, IP, ARP, ICMP, DHCP, RIP, ...

A l'issue du cours, l'étudiant devra être capable de :

- d'effectuer des choix d'architecture matérielle permettant de prendre en compte les besoins et les contraintes associés à une interconnexion de réseaux locaux,
- d'effectuer des choix de plans d'adressage et de routage simples,
- de mettre en œuvre (administrer) des réseaux

Ethernet et IP dans les contextes d'interconnexion de base abordés dans le cours.

Pré-requis nécéssaires

Algorithmique, programmation C (débutant)

Pré requis réseau nécessaires :

- connaissances des concepts de base en réseau
- bases en programmation distribuée dans les réseaux (API socket)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Optimisation des systèmes discrets

Présentation

Description

Introduction à la programmation linéaire - Modélisation par graphes et description des algorithmes (recherche de chemins, arbres et flots extrémaux). Procédures d'énumération implicite par séparation et évaluation progressive. Applications : problèmes d'affectation, de transport, d'ordonnancement et de planification de la production.

- Chaînes de Markov à temps discret ou continu. Phénomènes d'attente élémentaires. Evaluation de performances. Applications : domaine de l'informatique et des systèmes industriels.
- Concepts fondamentaux pour les réseaux de Petri. Analyse par énumération des marquages - Analyse structurelle - Applications : domaine de l'informatique et des systèmes industriels.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- différentes approches pour analyser, évaluer les performances de systèmes à événements discrets au travers de différents modèles (déterministes ou stochastiques), les optimiser (optimisation linéaire)

L'étudiant devra être capable de :

- analyser, modéliser et résoudre un problème d'optimisation de systèmes discrets sous la forme d'un programme linéaire ou d'un graphe, en appliquant les algorithmes adaptés (simplexe ou algorithmes de la théorie des graphes),

- modéliser et caractériser les processus markoviens stationnaires à espace d'état discret (chaines) à temps continu ou discret, les files d'attente et réseaux de files d'attente, d'analyser leur régime transitoire et stationnaire, d'évaluer leurs performances
- modéliser et analyser un SED par réseau de Petri

Pré-requis nécéssaires

Algèbre linéaire - Probabilités - Systèmes dynamiques (notion d'état) - Bases en logique et réseaux de Petri.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet d'initiation à la recherche

Présentation

Description

Le travail à réaliser comporte deux parties :

- une étude bibliographique sur un thème de recherche concerné par le sujet du projet. Cette étude conduit à la rédaction de la partie état de l'art d'un article scientifique (norme article IEEE)
- une réalisation technique qui s'étend sur tout un semestre. Cette phase conduit à la rédaction de la fin de l'article scientifique, et une soutenance en anglais

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Ces projets sont adossés à une formation à la recherche documentaire (FRD) pour faciliter l'élaboration d'un état de l'art du domaine. Un cours de conduite de projet complète la formation.

A la fin de ce module, l'étudiant aura eu une initiation pratique aux activités suivantes :

- effectuer une recherche bibliographie pertinente pour un sujet donné en respectant des normes de présentation (IEEE)
- rédiger une section d'état de l'art d'un article scientifique
- affiner le périmètre d'intervention prévisionnel pour la phase de réalisation du projet.
- appliquer des techniques de gestion de projet et de travail collaboratif en mode projet.
- rédiger un article scientifique et préparer une soutenance de projet en anglais

Commande avancée

Présentation

Description

Cette UE comporte trois parties:

- la commande numérique qui s'intéresse à la commande des systèmes dynamiques pour une implémentation sur calculateur numérique. Nous étudions alors la modélisation et l'analyse de systèmes linéaires discrets, la discrétisation d'un système continu par échantillonnage, la synthèse de loi de commande par retour d'état dans l'espace d'état ou de type RST à partir des fonctions de transfert en Z.
- la commande optimale qui s'intéresse à la synthèse de loi de commande, généralement par retour d'état, à partir de la résolution d'un problème d'optimisation.
- les mini-projets qui visent à mettre en pratique les méthodes théoriques vues en cours et TD sur différentes maguettes

Objectifs

A la fin de ce module, l'étudiant devra savoir :

- modéliser et analyser un système dynamique linéaire discret, ou échantillonné, représenté par des équations récurrente ou une forme espace d'état ou une fonction de transfert en Z
- passer d'une représentation à une autre
- analyser sa stabilité
- calculer le système échantillonné d'un système continu
- implémenter un correcteur en Z sur un calculateur numérique
- faire la synthèse d'un correcteur RST

- faire la synthèse d'une commande optimale LQ
- calculer la solution optimale d'un problème d'optimisation

Pré-requis nécéssaires

- Cours de 2e année « Systèmes bouclés »
- Cours 3e année IMACS « Modélisation et analyse des systèmes linéaires
- Cours 3e année IMACS « Commande des systèmes »

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

LV1

Présentation

Description

- Pratique individuelle : chaque étudiant(e) construit son projet de formation, en lien avec la structure d'enseignement artistique de son choix.
- Pratique collective : les étudiant(e)s participent à des ateliers proposés dans le cadre des filières musique, danse et théâtre, encadrés par des artistes professionnels et en relation étroite avec la création et la diffusion.
- Parcours pour la Découverte Artistique et Culturelle : les étudiant(e)s assistent à plusieurs événements culturels (spectacle, concert, exposition,...) encadrés par deux temps : celui de la préparation, en amont, grâce à des rencontres avec des artistes ou des techniciens, des conférences, l'accès à des répétitions et celui de l'échange après l'événement pour exprimer et partager le ressenti avec l'ensemble du groupe.

Objectifs

Mener de front des études d'ingénieur et une pratique artistique individuelle et collective

Pré-requis nécéssaires

Admission dans une des trois filières artistiques :

- Musique : justifier a minima de 5 ans de pratique instrumentale ou vocale régulière et d'une autonomie suffisante pour participer aux différents projets collectifs
- Danse et Théâtre : pas de prérequis

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Prospective et imaginaires du futur

Présentation

Description

Le programme est construit autour d'un projet mené en groupe par les étudiants. A partir d'un sujet de prospective, les étudiants organisent et participent à des ateliers de prospective. Ils produisent ensuite plusieurs scénarios, qu'ils soumettent à la discussion à l'occasion d'un forum de prospective. Les débats engendrés les accompagnent dans la formulation de leurs préconisations.

Des TD complémentaires enrichissent la réflexion des étudiants, avec des apports sur les récits et les imaginaires, l'éthique et la philosophie, ainsi que la géopolitique et l'interculturel. L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra être capable de

- s'engager dans une démarche prospective, dans une approche complexe et systémique
- mener une réflexion éthique, critique et réflexive, adaptée à la démarche prospective
- développer une communication professionnelle

Évaluation

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

PPI

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

