

4e ANNEE AE ORIENTATION IS SEMESTRE 8

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet mécatronique

Présentation

Description

Le grand domaine mécanique, mécatronique et chaines de puissance 2 intègres plusieurs composantes avec un contenus couvrant divers aspects:

- Projet mécatronique: prototypage, intégration et validation d'un système mécatronique dans un processus mêlant simulation temps réel et banc de tests.
- Conception mécatronique: méthodologie/outils et modèles pour le dimensionnement d'architectures de puissance multiphysiques
- Dynamique des structures: analyse vibratoire de structures mécaniques et commande associée
- Approfondissement: un enseignement spécifique est dispensé dépendamment de l'origine AE/GM en complément de la dynamique des structure avec un focus plus commande ou analyse vibratoire.

Pré-requis nécéssaires

Notions de base de mécanique, électronique, transfert thermique, et asservissement. Notions d'algorithmique

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Le grand domaine a pour objectif de développer la capacité à dimensionner, prototyper et valider ainsi qu'intégrer des problématiques fortes comme le couplage fort vibratoire-commande dès la phase de conception d'un système mécatronique.

Conception mécatronique

Présentation

Description

- Scénarios dimensionnement d'un système technique
- Modèles d'estimation et de simulation de composants ou d'ensemble de composants technologiques
- Procédure de dimensionnement et d'optimisation
- Implémentation des calculs dans un environnement numérique (python, excel)

Objectifs

Dans un contexte de changements technologiques rapides et d'organisations industrielles de plus en plus complexes, le développement d'un nouveau système à partir de zéro représente un défi de taille. La phase de conception préliminaire et de dimensionnement représente l'une des étapes les plus cruciales du processus global de développement d'un produit, au cours de laquelle les caractéristiques et les performances essentielles d'un système sont définies pour la première fois. Ce stade précoce est critique, car il jette les bases des caractéristiques clés du système et influence directement les performances finales, la faisabilité et le coût du produit.

- connaissances de base en modélisation multiphysique de type OD/1D
- connaissances de base en optimisation

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Dynamique des structures

Présentation

souples.

Description

Partie 1 : Vibration des structures et systèmes mécaniques Modélisation d'un système mécanique Système à n DDL Notion de mode propre Vibrations des poutres

Partie 2 : Commande des Systèmes articulés et des structures souples

Commande basée sur un modèle de connaissance du système en 'feedforward' qui peut être éventuellement complétée par un contrôle en boucle fermée ('feedback') tel un PID.

Systèmes articulés rigides : actionneurs électriques qui permettent une linéarisation complète du système et un simple contrôle en boucle fermé de type PD sur chacune des articulations du système articulé. Exemple sur la commande des robots industriels actuel.

Structures souples : Commande linéaire (PID) et approche de commande adaptative. Un exemple en sera donné sur le contrôle en position d'un bras-robot flexible.

Pré-requis nécéssaires

Bases en mécanique des solides et en commande

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Les vibrations des structures et systèmes mécaniques. La commande des systèmes articulés et des structures

Approfondissement AE

Présentation

Notions d'algorithmique Base d'Électrocinétique

Description

Etude des différents éléments constituant une chaine d'acquisition (du capteur à l'ordinateur)

- capteurs
- conditionnement du signal
- carte d'acquisition
- réalisation d'un programme d'acquisition et d'une interface utilisateur

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer les principes de base de l'acquisition de données à l'aide d'un ordinateur

L'étudiant devra être capable de :

- Dimensionner les différents éléments d'une chaîne d'acquisition simple
- Mettre en œuvre un langage de programmation graphique dédié à l'acquisition et le traitement des données (LabVIEW).

Lieu(x)

Toulouse

Pré-requis nécéssaires

Processus pour l'ingénierie des systèmes

Présentation

Description

- 1- Ouverture aux réseaux industriels Introduction générale sur les réseaux industriels et les protocoles couramment utilisés.
- 2- Informatique et électronique embarquées
- Analyse de capteur (ex. sonde de température),
- Réalisation de montage intégrant un amplificateur opérationnel,
- Prise en main du microcontrôleur de la famille des STM32.
- Prise en main de différents modules de transmission RF
- Mise en place de toute un architecture matérielle et logicielle pour réaliser une communication sans fils de la température.
- 3- Formation à la recherche documentaire Une formation sera dispensée sur les canaux de diffusion scientifiques (bases documentaires, journaux), les méthodologies de recherche et outils associés. Une sensibilisation aux droits d'auteurs et à l'analyse de la qualité des informations sera également donnée.

architecture, processus transverses) du cycle de vie du système ainsi que la gestion de projet agile.

Un projet intégrateur (TP) permet de traiter le développement d'un système complexe de bout en bout, en adoptant une approche basée sur des modèles (MBSE), en utilisant la méthode Arcadia et l'outil Capella.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'UE traite (CM, TD) chaque processus technique d'ingénierie système (besoins, exigences, analyse,

Instrumentation

Présentation

Notions d'algorithmique Base d'Électrocinétique

Description

Étude des différents éléments constituant une chaine d'acquisition (du capteur à l'ordinateur)

- capteurs
- conditionnement du signal
- carte d'acquisition
- réalisation d'un programme d'acquisition et d'une interface utilisateur

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer les principes de base de l'acquisition de données à l'aide d'un ordinateur

L'étudiant devra être capable de :

- Dimensionner les différents éléments d'une chaîne d'acquisition simple
- Mettre en œuvre un langage de programmation graphique dédié à l'acquisition et le traitement des données (LabVIEW).

Pré-requis nécéssaires

Programmation orientée objet temps réel

Présentation

Description

Partie temps réel:

Le module aborde les mécanismes des noyaux temps réel et la conception d'applications sur ces exécutifs.

L'étudiant devra être capable de :

- Mettre en place une méthodologie de conception afin de répondre à une spécification avec des contraintes de temps
- Concevoir des architectures logicielles d'application temps réel
- Dimensionner correctement les différents paramètres des tâches et des moyens de synchronisation et de communication
- Programmer le système en utilisant les services d¿un système d¿exploitation temps réel et un langage orienté objet
- Mettre au point, simuler et analyser les performances des applications

Partie programmation orientée objet:

A la fin du cours, les étudiants seront capables d'expliquer ce qu'est (dans le paradigme orienté objet).

- Une classe (attributs, méthodes, encapsulation)
- Un objet,
- Une relation entre classes (association, composition, agrégation, héritage),
- La propriété de polymorphisme et comment l'obtenir (overloading, overriding).

Objectifs

Ce module est constitué de deux composants :

- La partie sur les systèmes temps réel présente les systèmes temps réels, les concepts clefs, les applications, contraintes, et enseigne la programmation de ces systèmes en utilisant les services des systèmes d'exploitation temps réels.
- A la fin de la partie sur la programmation objet, les étudiants seront capables de produire un code C++ à partir d'un diagramme de classe UML avec relations, héritage et polymorphisme.

Pré-requis nécéssaires

Algorithmique, programmation C (débutant)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

LV1

Présentation

Description

- Pratique individuelle : chaque étudiant(e) construit son projet de formation, en lien avec la structure d'enseignement artistique de son choix.
- Pratique collective : les étudiant(e)s participent à des ateliers proposés dans le cadre des filières musique, danse et théâtre, encadrés par des artistes professionnels et en relation étroite avec la création et la diffusion.
- Parcours pour la Découverte Artistique et Culturelle : les étudiant(e)s assistent à plusieurs événements culturels (spectacle, concert, exposition,...) encadrés par deux temps : celui de la préparation, en amont, grâce à des rencontres avec des artistes ou des techniciens, des conférences, l'accès à des répétitions et celui de l'échange après l'événement pour exprimer et partager le ressenti avec l'ensemble du groupe.

Objectifs

Mener de front des études d'ingénieur et une pratique artistique individuelle et collective

Pré-requis nécéssaires

Admission dans une des trois filières artistiques :

- Musique : justifier a minima de 5 ans de pratique instrumentale ou vocale régulière et d'une autonomie suffisante pour participer aux différents projets collectifs
- Danse et Théâtre : pas de prérequis

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Prospective et imaginaires du futur

Présentation

Description

Le programme est construit autour d'un projet mené en groupe par les étudiants. A partir d'un sujet de prospective, les étudiants organisent et participent à des ateliers de prospective. Ils produisent ensuite plusieurs scénarios, qu'ils soumettent à la discussion à l'occasion d'un forum de prospective. Les débats engendrés les accompagnent dans la formulation de leurs préconisations.

Des TD complémentaires enrichissent la réflexion des étudiants, avec des apports sur les récits et les imaginaires, l'éthique et la philosophie, ainsi que la géopolitique et l'interculturel. L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra être capable de

- s'engager dans une démarche prospective, dans une approche complexe et systémique
- mener une réflexion éthique, critique et réflexive, adaptée à la démarche prospective
- développer une communication professionnelle

Évaluation

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

PPI

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

