

FIFTH YEAR - GM

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

System level modelling and simulation

ECTS 3 crédits

Hourly volume 29h

Introducing

Location(s)

Toulouse

Description

Objectives

The student will be able to model, simulate and analyse multi-domain power systems

Necessary prerequisites

Dynamic systems, fluid mechanics, solid rigid mechanics.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Composite structures and case study

ECTS 3 crédits

Hourly volume

46h

Introducing

Description

Necessary prerequisites

materials theory, continuum mechanics, behaviors.

Matrix Calculation

Objectives

The student will be able to perform simple sizing of composite structures and to choice a couple manufacturing/material for a given case study.

The student will be able to:

- -Choice a couple of fibers and matrix and their commercial products.
- -Choice a type of composite architecture: laminates, sandwichs, 2D1/2,3D, 4D.
- -Determine the manufacturing method: hand layup, fiber placement, RTM, LRI, RFI.
- -To be inspired by solutions of automotive, naval, wind energy or aerospace industry.
- -To be inspired by past experience in aeronautic industry.
- -Know and use laminate theory.
- -Knows and use simple sizing of junctions.
- -Know issues of impact and ageing.
- -Know issues of failure and damage.
- -Realize a case study: example wing box of an acrobatic aircraft
- -Make a presentation of their sizing and their design.
- -Work in a collaborative manner.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Heat Engines, Refrigerators and Heat Pumps

ECTS 3 crédits

Hourly volume

38h

Introducing

Description

Objectives

At the end of this course, the student should have understood and will be able to explain the operation of conventional heat engines, refrigerators and heat pumps as well as the basics of combustion

The student should be able to size and optimize conventional heat engines, refrigerators and heat pumps

Necessary prerequisites

Fundamentals in thermodynamics (1st year) Thermodynamics and Thermodynamic Analysis (1st year)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en

continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Non destructive testing - English

ECTS 4 crédits

Hourly volume 20h

Introducing

Description

Objectives

Module 1: Non Destructive testing (NDT)

Students have to know the main nondestructive testing methods with advantages/drawbacks and how to apply them to practical industrial cases. They must be able to choose the most appropriate method to solve specific industrial issues.

Module 2: Metallic alloys for high temperature applications ¿ Creep behaviour

Analysis of the physics occurring during creep and of the parameters which affect creep resistance.

How to apply basic theoretical models to calculate rupture life expectancy.

Knowledge of the main metallic alloys withstanding creep at high temperatures.

Module 3 : English

Students must be able to organize their scientific speech and writing logically, to use proper English in a concise and appropriate style while meeting genre conventions; master technical terms; resort to appropriate registers (specialized/non specialized audiences/readers) and quote scientific sources according to international citation standards.

Necessary prerequisites

Module 1: Nondestructive testing (NDT)

L1, 2 and 3 courses or equivalent: knowledge of fundamental principles in physics i.e. electricity, electromagnetism, optics, atomic structure and Materials Science.

Module 2: Metallic alloys for high temperature applications ¿ Creep behaviour

Mechanics of Materials: defects in metallic materials and plastic deformation mechanisms; behaviour of materials

Module 3: English

Students must master general English and know how to write and talk about general scientific elements in a rigorous way (1st, 2nd, 3rd & 4th year English courses).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Research project part II

ECTS 4 crédits

Hourly volume

7h

Introducing

Description

Objectives

The module is aimed at motivating students with research activities by means of a tutored projects involving groups of several students and directed by an academic or an industrial tutor.

At the end of this module, the student will have understood and be able to explain (main concepts):

- the concepts and techniques in relationship with the management of the research project involving several persons.

The student will be able to:

- finalize a research project involving several persons,
- integrate scientific approaches and techniques of different scientific domains to meet the realization goals of the research project

Necessary prerequisites

A final report

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Optional modulus

ECTS 7 crédits

Hourly volume 30h

Introducing

Description

Objectives

The student will be able to successfully follow 3 optional modules related to mechanical design skills

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Human relations

ECTS 6 crédits

Hourly volume

78h

Introducing

Description

Objectives

L'étudiant devra être capable de :

- -Analyser des situations de groupe avec des concepts issus de la psychologie sociale
- -Identifier les dimensions éthiques de ces situations et prendre position
- -Repérer et comprendre des informations liées aux RH
- -Analyser une situation de management dééquipe en référence à un cadre théorique
- -Formuler et argumenter des solutions managériales
- -Agir dans un milieu naturel : analyser, décider, agir ; mettre en œuvre la sécurité, utiliser du matériel spécifique. découvrir un site.
- -Respecter et s'intégrer dans un environnement différent de ses habitudes
- -S'engager avec cohérence dans le projet d'activités
- -Prendre part activement au collectif
- -Valider son projet professionnel et construire une stratégie pour trouver un emploi

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

None

Multidisciplinary design

ECTS 4 crédits

Hourly volume

45h

Introducing

Description

Necessary prerequisites

Probability (basic), statistics (basic), notions of system architecture (mechanical, hydraulic, electric, etc.)

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

Design of experiments

-To know the global concepts of DoE and understand the interest of the tool.

Surrogate models and sizing of mechatronic systems -To explain the process and the different models usefull for the optimal sizing of mechatronic systems

The student will be able to:

Design of experiments

- -To be able to define and set into work some tests allowing to get an optimistic process.
- -To carry out one's own design of experiments.

Surrogate models and sizing of mechatronic systems

- -To define the sizing scenarios of a technical system
- -To establish the estimation models and simulation modes of the set of components
- -To set a design procedure and to define the optimization problem
- -To Implement the calculations in a numerical environment

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

0

Management of risks

ECTS 5 crédits

Hourly volume

68h

Introducing

Description

Objectives

At the end of this module, the student will have understood and be able to explain the notions associated with dependability, reliability, maintenance and risk, as well as the organizations, trades, methods and activities useful to implement these notions.

The student will be able

- to identify the hindrances to the availability and to the reliability of systems,
- to make an assessment for choosing the most suitable architectures,
- to choose among the available methods the most appropriate to obtain the expected service of a system, when designing and maintaining, and to provide its insurance.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

System life cycle. Basic knowledge on probabilities. Statistics. Signal processing.

Industrialization

ECTS 5 crédits

Hourly volume

Introducing

- Demonstrate that final product manufactured is conform to expectations

Description

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts): The systems of industrialization and its interfaces. The challenges of production management (PM) and supply chain (SCM) as well as issues of scheduling.

What is configuration management, what are the enablers and what is the purpose

The student will be able to:

- Have an overview on manufacturing processes
- Understand the historical context of Industrialization
- Have a critical view on global manufacturing strategy
- Understand the elements on Smart Manufacturing and Industry 4.0
- Use the information of the different types of Industrial Management Tools
- Roughly describe airbus world (A/Cs family, industrial sharing across the Europe)
- Define a hierarchical & appropriated breakdown of a complex product
- Apply the change process and identify required data to allow decision
- Identify mechanisms that enable management of product offer and its customisation

Necessary prerequisites

Not applicable (no pre-requisit needed)

Reading of plans, current metallic materials, various types of machining.

Basic elements on: probabilities -Linear programming -

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Systems on chip

ECTS 4 crédits

Hourly volume 47h

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Thermal engines and systems

ECTS 4 crédits

Hourly volume 56h

Introducing

Description

Objectives

By the end of this module, the student should have understood and be able to analyze thermal and mechanical energy production systems and their associated components.

The student should be able to:

- Analyze the thermodynamic cycle associated with a power plant.
- Size a thermal engine to meet specifications in terms of requested power.
- Specify the components of a thermal engine or
- Calculate the air conditioning flow requirements to perform various functions (pressurization, fresh air renewal, heating, cooling) in an aircraft and adjust the recirculation and the flow distribution between the different cabin zones.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

Basics of thermodynamics and heat transfer.

[FRANCAIS] Projet de recherche et propriété industrielle

ECTS 6 crédits

Hourly volume 74h

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Human relations

ECTS 6 crédits

Hourly volume

78h

Introducing

Description

Objectives

L'étudiant devra être capable de :

- -Analyser des situations de groupe avec des concepts issus de la psychologie sociale
- -Identifier les dimensions éthiques de ces situations et prendre position
- -Repérer et comprendre des informations liées aux RH
- -Analyser une situation de management dééquipe en référence à un cadre théorique
- -Formuler et argumenter des solutions managériales
- -Agir dans un milieu naturel : analyser, décider, agir ; mettre en œuvre la sécurité, utiliser du matériel spécifique. découvrir un site.
- -Respecter et s'intégrer dans un environnement différent de ses habitudes
- -S'engager avec cohérence dans le projet d'activités
- -Prendre part activement au collectif
- -Valider son projet professionnel et construire une stratégie pour trouver un emploi

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

None

[FRANCAIS] MASTER 2 GENIE MECANIQUE

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

[FRANCAIS] MASTER 2 ENERGIE

ECTS 9 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Energy production from renewable resources

ECTS 5 crédits

Hourly volume 32h

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Technologies and architectures for the conversion and storage of electrical energy

5 crédits

Hourly volume 47h

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Innovative materials for the energy

ECTS 5 crédits

Hourly volume 15h

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Combination of multi-sources of energy platform

ECTS 9 crédits

Hourly volume 161h

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

The different generation technologies and energy management

5 crédits

Hourly volume 7h

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Human relations

ECTS 6 crédits

Hourly volume

78h

Introducing

Description

Objectives

L'étudiant devra être capable de :

- -Analyser des situations de groupe avec des concepts issus de la psychologie sociale
- -Identifier les dimensions éthiques de ces situations et prendre position
- -Repérer et comprendre des informations liées aux RH
- -Analyser une situation de management dééquipe en référence à un cadre théorique
- -Formuler et argumenter des solutions managériales
- -Agir dans un milieu naturel : analyser, décider, agir ; mettre en œuvre la sécurité, utiliser du matériel spécifique. découvrir un site.
- -Respecter et s'intégrer dans un environnement différent de ses habitudes
- -S'engager avec cohérence dans le projet d'activités
- -Prendre part activement au collectif
- -Valider son projet professionnel et construire une stratégie pour trouver un emploi

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

None

Qualitative Approach

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Quantitative Approach

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Designing for safety

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Process Safety

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Functional Safety

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Structural Safety

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toxic risks

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

ECTS 1 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

ECTS 2 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

ECTS 3 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

ECTS 4 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

ECTS 5 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Training period 5th year

Introducing

Toulouse

Description

16 to 26-week internship in a company whose main field of activity is civil engineering.

Objectives

The aim of this internship is to position the student as a working engineer, and to validate the skills acquired during the course. To this end, the student will develop a particular theme during the internship, which will be the subject of a dissertation (entitled technical dissertation).

The problem will be defined by mutual agreement between the company and the INSA tutor.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Training period 4th year

Introducing

Description

Internship period must last between 8 and 16 weeks Internship period can be done in France or in a foreing country

Internship pedriod can be done in a enterprise ou a laboratory

Student job must concerns theoical knowledge learned in the department (physicis, materials, electronics, instrumentaiotn, ...)

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Objectives

Goals of internship are:

- Get a professional experience in enterprise ou laboratory
- apply theorical knowledges
- produce a scientific work

Necessary prerequisites

Theorical knowledge og Genie Physique 4th year programm

Évaluation

[FRANCAIS] Relations Humaines et Professionnelles, éthique

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Industrialization

ECTS 3 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Industrial training

ECTS 4 crédits

Hourly volume 10h

Introducing

Description

Objectives

The apprentice will carry out his end-of-study project within his company or on international mobility. The objective is to put into practice his knowledge and engineering skills in the professional environment.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

System level modelling and simulation

ECTS 3 crédits

Hourly volume 29h

Introducing

Location(s)

Toulouse

Description

Objectives

The student will be able to model, simulate and analyse multi-domain power systems

Necessary prerequisites

Dynamic systems, fluid mechanics, solid rigid mechanics.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Composite structures and case study

ECTS 3 crédits

Hourly volume

46h

Introducing

Description

Necessary prerequisites

materials theory, continuum mechanics, behaviors.

Matrix Calculation

Objectives

The student will be able to perform simple sizing of composite structures and to choice a couple manufacturing/material for a given case study.

The student will be able to:

- -Choice a couple of fibers and matrix and their commercial products.
- -Choice a type of composite architecture: laminates, sandwichs, 2D1/2,3D, 4D.
- -Determine the manufacturing method: hand layup, fiber placement, RTM, LRI, RFI.
- -To be inspired by solutions of automotive, naval, wind energy or aerospace industry.
- -To be inspired by past experience in aeronautic industry.
- -Know and use laminate theory.
- -Knows and use simple sizing of junctions.
- -Know issues of impact and ageing.
- -Know issues of failure and damage.
- -Realize a case study: example wing box of an acrobatic aircraft
- -Make a presentation of their sizing and their design.
- -Work in a collaborative manner.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Heat Engines, Refrigerators and Heat Pumps

ECTS 3 crédits

Hourly volume

38h

Introducing

Description

Objectives

At the end of this course, the student should have understood and will be able to explain the operation of conventional heat engines, refrigerators and heat pumps as well as the basics of combustion

The student should be able to size and optimize conventional heat engines, refrigerators and heat pumps

continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

Fundamentals in thermodynamics (1st year) Thermodynamics and Thermodynamic Analysis (1st year)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en

Optional modulus

ECTS 7 crédits

Hourly volume 30h

Introducing

Description

Objectives

The student will be able to successfully follow 3 optional modules related to mechanical design skills

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Non destructive testing - English

ECTS 4 crédits

Hourly volume

20h

Introducing

Description

Objectives

Module 1: Non Destructive testing (NDT)

Students have to know the main nondestructive testing methods with advantages/drawbacks and how to apply them to practical industrial cases. They must be able to choose the most appropriate method to solve specific industrial issues.

Module 2 : Metallic alloys for high temperature applications ¿ Creep behaviour

Analysis of the physics occurring during creep and of the parameters which affect creep resistance.

How to apply basic theoretical models to calculate rupture life expectancy.

Knowledge of the main metallic alloys withstanding creep at high temperatures.

Module 3 : English

Students must be able to organize their scientific speech and writing logically, to use proper English in a concise and appropriate style while meeting genre conventions; master technical terms; resort to appropriate registers (specialized/non specialized audiences/readers) and quote scientific sources according to international citation standards.

Necessary prerequisites

Module 1: Nondestructive testing (NDT)

L1, 2 and 3 courses or equivalent: knowledge of fundamental principles in physics i.e. electricity, electromagnetism, optics, atomic structure and Materials Science.

Module 2: Metallic alloys for high temperature applications ¿ Creep behaviour

Mechanics of Materials: defects in metallic materials and plastic deformation mechanisms; behaviour of materials

Module 3: English

Students must master general English and know how to write and talk about general scientific elements in a rigorous way (1st, 2nd, 3rd & 4th year English courses).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Human relations

ECTS 6 crédits

Hourly volume

78h

Introducing

Description

Objectives

L'étudiant devra être capable de :

- -Analyser des situations de groupe avec des concepts issus de la psychologie sociale
- -Identifier les dimensions éthiques de ces situations et prendre position
- -Repérer et comprendre des informations liées aux RH
- -Analyser une situation de management dééquipe en référence à un cadre théorique
- -Formuler et argumenter des solutions managériales
- -Agir dans un milieu naturel : analyser, décider, agir ; mettre en œuvre la sécurité, utiliser du matériel spécifique. découvrir un site.
- -Respecter et s'intégrer dans un environnement différent de ses habitudes
- -S'engager avec cohérence dans le projet d'activités
- -Prendre part activement au collectif
- -Valider son projet professionnel et construire une stratégie pour trouver un emploi

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

None

Work experience scheme

ECTS 30 crédits

Hourly volume

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Non destructive testing - English

ECTS 4 crédits

Hourly volume

20h

Introducing

Description

Objectives

Module 1: Non Destructive testing (NDT)

Students have to know the main nondestructive testing methods with advantages/drawbacks and how to apply them to practical industrial cases. They must be able to choose the most appropriate method to solve specific industrial issues.

Module 2: Metallic alloys for high temperature applications ¿ Creep behaviour

Analysis of the physics occurring during creep and of the parameters which affect creep resistance.

How to apply basic theoretical models to calculate rupture life expectancy.

Knowledge of the main metallic alloys withstanding creep at high temperatures.

Module 3 : English

Students must be able to organize their scientific speech and writing logically, to use proper English in a concise and appropriate style while meeting genre conventions; master technical terms; resort to appropriate registers (specialized/non specialized audiences/readers) and quote scientific sources according to international citation standards.

Necessary prerequisites

Module 1: Nondestructive testing (NDT)

L1, 2 and 3 courses or equivalent: knowledge of fundamental principles in physics i.e. electricity, electromagnetism, optics, atomic structure and Materials Science.

Module 2: Metallic alloys for high temperature applications ¿ Creep behaviour

Mechanics of Materials: defects in metallic materials and plastic deformation mechanisms; behaviour of materials

Module 3: English

Students must master general English and know how to write and talk about general scientific elements in a rigorous way (1st, 2nd, 3rd & 4th year English courses).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Composite structures and case study

ECTS 3 crédits

Hourly volume

46h

Introducing

Description

Necessary prerequisites

materials theory, continuum mechanics, behaviors.

Matrix Calculation

Objectives

The student will be able to perform simple sizing of composite structures and to choice a couple manufacturing/material for a given case study.

The student will be able to:

- -Choice a couple of fibers and matrix and their commercial products.
- -Choice a type of composite architecture: laminates, sandwichs, 2D1/2,3D, 4D.
- -Determine the manufacturing method: hand layup, fiber placement, RTM, LRI, RFI.
- -To be inspired by solutions of automotive, naval, wind energy or aerospace industry.
- -To be inspired by past experience in aeronautic industry.
- -Know and use laminate theory.
- -Knows and use simple sizing of junctions.
- -Know issues of impact and ageing.
- -Know issues of failure and damage.
- -Realize a case study: example wing box of an acrobatic aircraft
- -Make a presentation of their sizing and their design.
- -Work in a collaborative manner.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Research project part II

ECTS 4 crédits

Hourly volume 7h

Introducing

Description

Objectives

The module is aimed at motivating students with research activities by means of a tutored projects involving groups of several students and directed by an academic or an industrial tutor.

At the end of this module, the student will have understood and be able to explain (main concepts):

- the concepts and techniques in relationship with the management of the research project involving several persons.

The student will be able to:

- finalize a research project involving several persons,
- integrate scientific approaches and techniques of different scientific domains to meet the realization goals of the research project

Necessary prerequisites

A final report

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

System level modelling and simulation

ECTS 3 crédits

Hourly volume 29h

Introducing

Location(s)

Toulouse

Description

Objectives

The student will be able to model, simulate and analyse multi-domain power systems

Necessary prerequisites

Dynamic systems, fluid mechanics, solid rigid mechanics.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Heat Engines, Refrigerators and Heat Pumps

38h

ECTS 3 crédits

Hourly volume

Introducing

Description

Objectives

At the end of this course, the student should have understood and will be able to explain the operation of conventional heat engines, refrigerators and heat pumps as well as the basics of combustion

The student should be able to size and optimize conventional heat engines, refrigerators and heat pumps

Necessary prerequisites

Fundamentals in thermodynamics (1st year) Thermodynamics and Thermodynamic Analysis (1st year)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en

continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

0

Optional modulus

ECTS 7 crédits

Hourly volume 30h

Introducing

Description

Objectives

The student will be able to successfully follow 3 optional modules related to mechanical design skills

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Human relations

ECTS 6 crédits

Hourly volume 78h

Introducing

Description

Objectives

L'étudiant devra être capable de :

- -Analyser des situations de groupe avec des concepts issus de la psychologie sociale
- -Identifier les dimensions éthiques de ces situations et prendre position
- -Repérer et comprendre des informations liées aux RH
- -Analyser une situation de management dééquipe en référence à un cadre théorique
- -Formuler et argumenter des solutions managériales
- -Agir dans un milieu naturel : analyser, décider, agir ; mettre en œuvre la sécurité, utiliser du matériel spécifique. découvrir un site.
- -Respecter et s'intégrer dans un environnement différent de ses habitudes
- -S'engager avec cohérence dans le projet d'activités
- -Prendre part activement au collectif
- -Valider son projet professionnel et construire une stratégie pour trouver un emploi

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Necessary prerequisites

None

Training period 5th year

Introducing

Toulouse

Description

16 to 26-week internship in a company whose main field of activity is civil engineering.

Objectives

The aim of this internship is to position the student as a working engineer, and to validate the skills acquired during the course. To this end, the student will develop a particular theme during the internship, which will be the subject of a dissertation (entitled technical dissertation).

The problem will be defined by mutual agreement between the company and the INSA tutor.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Training period 4th year

Introducing

Description

Internship period must last between 8 and 16 weeks Internship period can be done in France or in a foreing country

Internship pedriod can be done in a enterprise ou a laboratory

Student job must concerns theoical knowledge learned in the department (physicis, materials, electronics, instrumentaiotn, ...)

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Objectives

Goals of internship are:

- Get a professional experience in enterprise ou laboratory
- apply theorical knowledges
- produce a scientific work

Necessary prerequisites

Theorical knowledge og Genie Physique 4th year programm

Évaluation

Modules pluridisciplinaire FC GM

Introducing

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

