

5th YEAR GPE_OPTION 2

Practical info

Location(s)

Toulouse

Waste treatment and valorization

ECTS 5 crédits

Hourly volume

63h

Introducing

Objectives

At the end of this module, the student will have understood and be able to explain:

- the legal and usual definitions of wastes in France.
- the strategies for waste treatment
- the principles of unit operations and processes commonly used in solid waste reduction, treatment or valorisation (chemical, biochemical or thermal processes).

The student will be able to:

- identify basic rules and policies for an environmental problem, and use it to define a technical problem or to propose an adapted solution
- quantify the dispersion of air pollutants from industrial sources
- determine the valorisation potential for an industrial waste (or gas effluent or wastewater)
- analyse and design processes the treatment or valorisation of solid wastes

The student will be able to:

- identify basic rules and policies for an environmental problem, and use it to define a technical problem or to propose an adapted solution
- quantify the dispersion of air pollutants from industrial sources
- determine the valorisation potential for an industrial

waste (or gas effluent or wastewater)

- analyse and design processes the treatment or valorisation of solid wastes

Necessary prerequisites

Good knowledge of the basis of chemical engineering

Practical info

Location(s)

Toulouse

Advanced Separation processes for new water-uses, valorisation and new resources

5 crédits

Hourly volume 15h

Introducing

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

- to know the context of the new resources for water and compounds of interest (sea/brine waters, secondary effluent, food bio products)
- To know specific processes for water production (desalination, reuse, ultrapure water, water for industrial use ..)
- principle and design of sorption unit operations (ion exchange, preparative chromatography, adsorption)
- principle and design of advanced membrane separation (reverse osmosis. operations electromembrane processes)
- principle and design of unit operations based on a phase transition (precipitation, crystallization, ¿)

The student will be able to:

- to design processes for domestic wastewaters tertiary
- to design desalination processes
- to design design processes for ultrapure water production or specific water for utilities
- -to design processes for N , P and C recovery
- identify new resources
- conceive and design systems for these new resource
- apply the knowledge to other case studies

Necessary prerequisites

Unit operation I4PETF31 Chemistry I1ANBC11 Energy and mass balance I3BEGP11 2AICBE Numerical Methods of resolution

Practical info

Location(s)

Toulouse

