

Liste d'éléments pédagogiques

Practical info

Location(s)

Architectures or technological systems

ECTS 7 crédits

Hourly volume

93h

Introducing

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

Power transmissions

- -Needs for power, associated functions, power architectures in technological systems (mechanic, hydraulic, electric)
- -The interest of system modeling, methods and tools,

Computer science & Electronics

- the interest to have a common modeling graphical language, the concepts relative to a object oriented approach.
- Industrial network introduction, interface eelctronics

The student will be able to:

Power transmissions

- identify and structure the power needs (supply, meter, distribute, transform, condition, manage, etc)
- analyse a schematic of a power system (mechanical, hydraulic, electric) at an architectural and functional level
- assess/list/compare solutions for implementing a given function of power transmission
- synthesize a power architecture (mechanical, electrical, electric) from functional needs

Computer science & Electronics

- how to choose the most appropriate diagrams depending on the approach: structure, behaviour,

interaction

- Propose an object-oriented UML model of a system
- Implement a technological solution on a mechatronic system

Necessary prerequisites

Basic technological knowledge in mechanics, hydraulics, electrics

Practical info

Location(s)

Q

Multiphysics modeling

ECTS 6 crédits

Hourly volume

Introducing

Location(s)

Toulouse

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

- Lumped (OD/1D) and distributed (3D) parameters models for Multiphysic systems.
- Network approach for lumped parameters models, Acausal/causal concepts, bond graph, Finite Element Methods.

The student will be able to:

- Set up OD/1D (electrical, mechanical, hydraulical, thermal) and 3D models (mechanical) for mechatronics systems.
- Use OD/1D platforms such as : Dymola/Modeilca, AMESim, Simulink.
- Use 3D platforms such as: Patran/Nastran or Abagus

Necessary prerequisites

Kirchhoff laws, electrocinetic, work/energy/power, pressure and hydrostatic, conduction/convection, heat transfer.

Strength of material for BSME.

Practical info

Modelling tools and Optimization

ECTS 5 crédits

Hourly volume

Introducing

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

- Various approaches to analyze and evaluate the performances of discrete event system DES,
- Various types of modelling adapted to the problems considered (deterministic or stochastic models , numerical and combinatorics optimization models, models of concurrency)
- Algorithms available to solve these problems.

The student will be able to:

Model and solve operational research problems (optimisation, linear programming, graphs, stochastic process) and discrete-event systems problems.

Model stochastic systems, such as a network of queues , using Markov chains. Compute their stationary performance measures, and dimension their capacity.

Model a DES by Petri net, analyse the properties of the Petri net by various methods of analysis (exhaustive and structural) Linear Algebra, Differential Calculus, Probabilities, Dynamic systems, Basic concepts in propositional logics and in Petri Nets.

Practical info

Location(s)

Toulouse

Necessary prerequisites

Automatic control

ECTS 4 crédits

Hourly volume

Introducing

Objectives

For GM students, this course is a practical extension of the continuous marking methods seen in the previous

Optional part for AE: Understand the basic principles and constraints of hardware in the loop (HIL) simulations.

All students follow the end of the UF which deals with numerical control techniques and methods.

The student will be expected to be able to:

- Model a discrete system or discretize a continuous system.
- Give the performance of a discrete system.
- Synthesize a discrete control following a specification (performance) and implement it.

Practical info

Location(s)

Toulouse

Necessary prerequisites

- AE-SE:

Feedback systems (I2MAAU11) Control and computer architecture (I3MAAU11) Control of Linear Time Invariant Systems (I3MAAU21)

- GM-IS:

Dynamic Systems (I3ICDM11)

Improving one's autonomy and building one's own professional project level 2 S7

4 crédits

Hourly volume

46h

Introducing

¿ Enrich your professional network

¿ Set development axes, objectives and action plans

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

Physical and Sports Activities

The student will be able to:

to list the problems to be solved:

- ¿ Know the Physical and Sports Activity (rules, meaning, roles, etc.),
- ¿ Design the objective of the project.

to organize:

- ¿ Know the constraints, the resources, and the means available,
- ¿ Know how to choose and plan actions over time,
- ¿ Know how to get involved in the group and the project: know how to adapt, dare to stimulate action, know how to give up, propose, etc.

to regulate:

- ¿ Know how to observe,
- ¿ Know how to carry out a balance sheet,
- ¿ Know how to readjust the choices if necessary.

Necessary prerequisites

Learning outcomes 1st, 2nd, 3rd year.

Practical info

Location(s)

Toulouse

Individualized Professional Project

The student should be able to:

- ¿ Develop your professional vision and define a strategy.
- ¿ Customize, present and compare your project to professionals

Improve your management abilities

ECTS 4 crédits

Hourly volume 45h

Introducing

Objectives

At the end of this module, the student will

- ¿ Know the legal environment and responsibilities of a business activity
- ¿ Be able to objectively assess the financial health of a company and evaluate the rentability of an investment ¿ Realize a market diagnosis (benchmarking) and a business diagnosis in order to make decisions and set goals and strategies
- ¿ Collect the market data and put in action a business plan adapted to the means and goals of the company Module L 2

The objectives, defined in reference to the CEFRL for the 5 language activities, are specific for the language studied Chinese, German, Spanish ¿ and the level of the student.

They can be consulted on:

https://moodle.insatoulouse.fr/course/view.php?id=44

In certain cases, students may be authorised to follow an English module instead of another language

Management I3CCGE51

Practical info

Location(s)

Toulouse

Necessary prerequisites

Toulouse School of Management

Practical info

Location(s)

Political sciences semester 1

ECTS 3 crédits

Hourly volume

Practical info

Location(s)

