

CONTINUING EDUCATION_CT2 - APPLIED PHYSICS

Practical info

Location(s)

Training period 4th year

ECTS 9 crédits

Hourly volume

Practical info

Location(s)

Training period 5th year

ECTS 21 crédits

Hourly volume

Practical info

Location(s)

Advenced intrumentation 1

ECTS 5 crédits

Hourly volume 62h

Practical info

Location(s)

Instrumentation advanced 2

ECTS 4 crédits

Hourly volume 58h

Introducing

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):
Real Time: Real time concept, scheduling, rules to develop a real time application, determinism and jitter concepts

Can Bus : General CAN concept, from concept to protocol

Network: Interest of local network for tests and measurements applications.

The student will be able to:

Real Time : Develop a real time application running on

National Instruments Compact RIO

 $\mbox{\sc Can}$ Bus : Manage communication between two $\mbox{\sc CAN}$

nodes

Network : Manage network technologies to realise a

simple project

Practical info

Location(s)

Toulouse

Necessary prerequisites

General computing LabVIEW programming Labwindows/CVI programming

Instrumentation Lab

ECTS 5 crédits

Hourly volume 35h

Practical info

Location(s)

Gas Sensor

ECTS 5 crédits

Hourly volume

34h

Introducing

Objectives

At the end of this module, the student will have understood and be able to explain (main concepts):

- the approach and the different steps for the conception and realization of a micro- and nanoelectronic by integration of nano-objects synthesized as a colloidal solution:
- the operating model of a nano-sensor

the student will have understood and be able to

- the main concepts and the experimental practices about nano-object synthesis and stabilization of colloidal solutions;
- the main concepts and the experimental practices about deposition of nano-objects from a solution into 2D and 3D arrays on a surface;
- the physical principles of nanoparticles based sensors (gaz sensor, strain sensor ¿).

The student will be able to:

- produce a sensor relying on nanoparticle arrays with particles synthesized and assembled during the project;
- measure the sensor properties and describe how it works:
- -discuss the results obtained suggest and improvements..

The student will be able to:

- suggest a reasonable solution for the realization of a sensor gathering the different concepts described above;
- produce an expertise on the conception and the practical realization on a novel sensor.

Necessary prerequisites

Master 1 in Physics, Applied Physics, Chemistry or Material Science or equivalent

Practical info

Location(s)

Physics Engineering and Economic Development

ECTS 5 crédits

Hourly volume 75h

Introducing

Objectives

This educational unit is composed of three distinct lectures. Two of them are technological: Physics of semiconductor heterostructures and Telecommunication satellites/RF Functions, the third being centered on the impact of modern science: Nano Cultures.

Multiple objectives are targeted:

- Acquire the fundaments of the recent innovations in semi-conductor devices for microelectronic industry
- Understanding and modelling of semiconductor heterostructures
- To be able to describe the basic Telecommunication payload architecture by understanding the functional description of a bent-pipe transponder
- To acquire good understanding of each RF equipment (Requirements, RF drivers, technologies and associated tips)
- Develop a personal thinking on the impact of sciences on society fin relation with global environemental changes
- Analyse and criticize the nature of Science and technology
- Construct a research project forming sense with respect to personal values and societal challenges

- Course on "semiconductors" given in 3IMACS.
- Use of decibel units
- RF basics (noise, gain¿)

Practical info

Location(s)

Toulouse

Necessary prerequisites

Instrumentation

ECTS 3 crédits

Hourly volume

Practical info

Location(s)

Laser and OptoElectronics

ECTS 2 crédits

Hourly volume

Practical info

Location(s)

Management, Organisation in a group, professionnal behavior

Hourly volume

Practical info

Location(s)

English

ECTS 3 crédits

Hourly volume

Practical info

Location(s)

