

2e ANNEE INGENIERIE DE LA CONSTRUCTION

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Mathématiques

Présentation

Description

Partie : Concepts de mathématiques (CM = 17,5h/ TD = 17,5h)

- 1. Intégrales généralisées et séries (2CM/2TD)
- 2. Normes 1,2 et infinie en dimension finie et infinie (1.5CM/1TD)
- 3. Produit scalaire, Cauchy-Schwarz et Pytaghore (1.5CM/1TD)
- 4. Orthogonalité des vecteurs, décomposition sur une base orthogonales (1CM/2TD)
- 5. Matrices spéciales : symétriques, de projection, isométries (1.5CM/2TD)
- 6. Continuité et différentiabité de fonctions à plusieurs variable (2CM/3TD)
- 7. Intégration multiple (3CM/3TD)
- 8. Hessienne et optimisation (1.5CM/OTD)

Partie : Analyse numérique (CM=7,5h / TD=7,5h / TP=17,5h)

- O. Introduction à python et à l'analyse numérique (1TP)
- 1. Intégration numérique (Rectangle, trapèzes et Simpson) (1CM/1TD/1TP)
- 2. Normes et conditionnement (Normes induites et influence du conditionnement) (1CM/1TD/1TP)
- 3. Résolution directe de systèmes linéaires (Gauss et LU) (1CM/1TD/1TP)
- 4. Résolution d'équations non-linéaires (Dichotomie, Newton et point fixe) (1CM/1TD/1TP) 5. Interpolation polynômiale (Vandermonde et effet de Runge) (1CM/1TD/1TP)
- 6. Moindres carrés (Equations normales) (1CM/1TD/1TP)

Partie : Probabilité et statistique (CM=13,75h / TD=13,75h / TP=2,5h)

1. Événements, Probabilités, Conditionnement, Indépendance

- 2. Variables aléatoires, lois de variables aléatoires, variables discrètes
- 3. Variables aléatoires continues, Vecteur aléatoire
- 4. Inférence Statistique : estimation ponctuelle, Intervalle de confiance et Tests

Objectifs

Cette UE a pour objectif de maîtriser les concepts et les bases essentielles en mathématiques pour l'ingénieur en Génie Civil ou en Génie Mécanique. Cette UE est subdivisée en trois éléments constitutifs avec des objectifs complémentaires

- -Concepts de mathématiques : Maîtriser les objets mathématiques essentiels pour l'ingénieur Génie Civil ou Génie Mécanique
- -Analyse numérique : Déployer des algorithmes efficaces sous Python et analyser leur convergence
- -Probabilité et statistique : Comprendre et appliquer une modélisation probabiliste et statistique

Pré-requis nécéssaires

Cours de Mathématiques de 1ère année. Attention les différentes parties ne sont pas indépendantes et les outils dans une partie peuvent être utilisés dans une autre.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des

enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Mécanique

Présentation

Description

Résoudre le principe fondamental de la statique pour un système de solides rigides :

- Modéliser les actions mécaniques usuelles sous forme de torseurs (liaisons et efforts extérieurs)
- Modéliser le frottement grâce au modèle de Coulomb
- Modéliser le basculement avec un centre de poussée mobile sur un appui plan
- Déterminer le nombre d'inconnues statiques et calculer l¿isostatisme/hyperstatisme
- Choisir une méthode de résolution du PFS (isolements, équations à utiliser, solides soumis à deux glisseurs)
- Déterminer les actions mécaniques désirées (liaison ou actionneur)
- Vérifier la stabilité (non glissement avec Coulomb, non basculement sur un plan, non décollement des appuis)

Déterminer la vitesse et l'accélération absolue ou relative d'un point d'un solide rigide :

- Interpréter le paramétrage d'eun mécanisme
- Déterminer le torseur des vitesses caractérisant le mouvement d¿un solide
- Utiliser la composition des vitesses, le champ des vitesses et la dérivation vectorielle dans une base
- Déterminer la condition de roulement sans glissement au contact entre deux solides
- Résoudre graphiquement un problème de cinématique 2D (axe instantané de rotation, champ des vitesses)

À la fin de ce cours, vous serez en mesure :

- de déterminer les charges mécaniques s'exerçant sur des solides (étape préliminaire au dimensionnement).
- de vérifier les conditions de stabilité d'un mécanisme (frottement, basculement, décollement d'un appui),
- d'analyser les vitesses et accélérations dans un mécanisme (notamment dans les transmissions de puissance).

Pré-requis nécéssaires

- Lecture d'un schéma cinématique
- Résolution de systèmes d'équations algébriques
- Trigonométrie et projections
- Vecteurs, produits scalaire et vectoriel
- Dérivation de fonctions composées

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Conception CAO

Présentation

Les enseignements d'initiation aux techniques industrielles de première année : I1ANTI11 et I1ANSY21.

Description

3ECTS : conception mécanique, concevoir et comprendre l'architecture de mécanismes 3ECTS : BIM génie civil modéliser passer de la 2D à la 3D, concepts de technique des constructions

Objectifs

A la fin de ce module, l¿étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Les concepts de base de conception

L'étudiant devra être capable de :

- définir un guidage en rotation simple,
- définir un assemblage de pièces,
- de représenter de manière schématique (modélisation),
- de donner une représentation graphique de l'architecture d'un mécanisme.
- réaliser des représentations graphique 2D et 3D
- modéliser des éléments de projets de génie civil
- interroger une maquette numérique pour en extraire des données de production
- comprendre le fonctionnement mécanique de projets de génie civil.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Résistance des Matériaux 1

Présentation

Description

Modélisation, rappels de statique ; Efforts internes (efforts de cohésion), L'équivalence contraintes-efforts internes, Équations d'équilibre des poutres ; Calcul de déformations, contraintes, déplacements : etude de l'effort normal, la flexion pure, de la torsion ; Projet (IronMan RdM)

Objectifs

Résistance des matériaux : Introduction à la théorie des poutres

- Établir les diagrammes des sollicitations intérieurs pour une poutre droite isostatique dans un problème plan.
- Calculer les contraintes et déformations pour quelques sollicitations simples dans le cas d'une section simple et d'une poutre élancée.
- L'objectif final est d'apprendre à analyser et à concevoir des éléments structurels de type 'poutre' soumis à une tension/compression, une torsion et une flexion.

Pré-requis nécéssaires

Statique (PFS), calcul intégral et différentiel, calcul vectoriel.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Expression

Présentation

Description

travail dirigé sur l'écrit, la synthèse, la vulgarisation scientifique

travail dirigé sur l'oral et la présentation professionnelle

évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Développer et consolider ses compétences orales et écrites dans le domaine spécifique de la communication professionnelle :

- -transmettre de l'information complexe sous une forme efficace et très structurée (synthèse de dossier)
- -organiser l'information selon des plans par axes logiques
- -mener des présentations orales en posture professionnelle, et en utilisant des supports adaptés (diaporama notamment)
- rédiger un rapport professionnel structuré

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit,

Economie contemporaine et transition écologique

Présentation

Description

Les principaux axes étudiés sont les suivants :

- Le marché
- Les acteurs de l'économie
- Revenu et distribution
- La croissance économique
- Le chômage
- Le financement de l'économie
- Monnaie et inflation
- Les politiques économiques
- Les nouveaux modèles économiques

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'objectif de ce cours est d'apporter des notions de base permettant aux étudiants de mieux appréhender leur environnement actuel et à venir et à en cerner les principaux enjeux.

Les étudiants devront pouvoir soutenir une conversation et débattre en utilisant des arguments fondés sur la connaissance des mécanismes économiques fondamentaux et de quelques théories de la pensée économique

Langue Vivante 1

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Soutenance de stage

Présentation

Toulouse

Description

rapport écrit à rendre soutenance orale

Objectifs

A partir d'une expérience professionnelle en entreprise, développer ses capacités à restituer et analyser cette expérience en prenant du recul (retour d'expérience) rédiger et structurer un rapport professionnel selon une progression précise présenter un rapport professionnel avec des supports pertinents et dans un format adapté présenter une soutenance orale structurée centrée sur un bilan analytique de l'expérience

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Equations Différentielles Ordinaires et Séries

Présentation

Description

- 1. Rappels et compléments sur les EDO scalaires d'ordre 1 et 2 : Cas linéaire, Equations de la Mécanique, Equations de Ricatti.
- 2. Aspects qualitatifs des EDO: Solutions maximales, globales. Théorèmes déexistence et déunicité. Équations à variables séparables. Portraits de phase.
- 3. Aspects numériques des EDO : Schémas d¿Euler. Méthode des trapèzes. Schéma de Runge-Kutta. Estimation d¿erreur.
- 4. Séries de fonctions : Rappels sur les suites de fonctions et séries numériques. Modes de convergence, propriétés de la somme. Séries entières, application aux EDO.
- 5. Systèmes différentiels linéaires : Ordre 1, coefficients constants au premier membre.

Exponentielle matricielle. Résolution pratique. Portraits de phase dans le plan. Stabilité des équilibres.

6. Transformation de Laplace : Définition intégrale. Propriétés caculatoires. Application aux EDO.

Pré-requis nécéssaires

Cours de Mathématiques de 1ère Année et UE 121CMT31

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Ce module présente le cadre mathématique des Équations Différentielles Ordinaires et apporte des méthodes pour une étude qualitative et quantitative. Les étudiants doivent être capables d'aidentifier le type d'aune équation différentielle et de mettre en œuvre les techniques adéquates pour la résoudre ou caractériser ses solutions.

Energie Mix et Transition

Présentation

Description

Les principales notions abordées au cours de l'UE sont : les rendements de conversion, de transport, de stockage, d'usage / la densité surfacique de puissance / l'intensité en ressources matérielles / le facteur de charge / la notion de stock et de flux / les profils de production et de demande / la mise en réseau / le mix énergétique / les scénarios de transition énergétique pour 2050.

L'UE aborde les technologies suivantes : production éolienne, stockage par électrolyse (H2), photovoltaïque, batterie électrochimique, hydroélectricité / STEP, centrales thermiques fossile, nucléaire et biomasse, production de biogaz.

Objectifs

Appréhender les enjeux liés à l'indispensable approvisionnement énergétique de notre système productif.

Savoir répondre aux questions suivantes :

- Comment obtenons-nous notre énergie aujourd'hui (connaître les différents moyens de conversion et de stockage, et les différents mix) ?
- Quels sont les ordres de grandeurs et au quotidien pour nos actions individuelles et à l'échelle de la nation ?
- Où sont les dépendances, faiblesses et limites de notre approvisionnement énergétique ?
- Comment constituer un mix énergétique qui réponde à un profil de demande jusqu'en 2050 et à l'enjeu de la décarbonation ?

Pré-requis nécéssaires

Connaître les notions de puissance et énergie électriques, ainsi que les notions générales de rendement et de densité.

Avoir acquis les connaissances et compétences de première année INSA en électrocinétique, mécanique du point et thermodynamique.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

0

Cultures et Compétences Numériques 1

Présentation

Description

Cours d'introduction à l'IA : histoire, algorithmes, enjeux.

Découverte "no code" des réseaux de neurones sur Vittascience ; notebook de construction d'un petit réseau de reconnaissance de caractères.

Présentation de PIX et traversée d'un certain nombre de thèmes en autonomie avec l'objectif de passer la certification PIX en fin de 3e année. L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l¿étudiant.e aura découvert les premières dimensions du champ de l¿lA: historique, exemples de ce que l'I.A. permet, distinction supervisé et non-supervisé, périmètre rapide des techniques et algorithmes, aspects éthiques, risques et controverses. Dans une seconde de partie, l¿étudiant.e aura avancé son parcours PIX selon le programme définir.

Pré-requis nécéssaires

rudiments de programmation Python

Évaluation

Dynamique

Présentation

(PFD) et le théorème de l'énergie cinétique (TEC)

Description

- Analyser la répartition spatiale de la masse d'un solide rigide (matrice d'inertie, centre d'inertie)

Principe fondamentale de la dynamique pour un système de solides rigides :

- Déterminer les torseurs cinétiques et dynamiques d'un solide rigide
- Choisir la stratégie d'application du PFD (ordre des isolements, équations à utiliser)
- Déterminer des actions mécaniques ou des équations différentielles du mouvement en appliquant le PFD

Théorème de l'énergie cinétique pour un système de solides rigides:

- Calculer l'énergie cinétique d'un solide en mouvement (rotation et translation)
- Déterminer la puissance des efforts extérieurs et des actions de contact
- Écrire une équation de mouvement ou d'effort en utilisant le TEC

Pré-requis nécéssaires

Cours de statique du solide :

- Calcul de force et de moment
- Modélisation des actions mécaniques usuelles
- Calcul de vitesse et d'accélération
- Torseurs des forces et des vitesses
- Résolution d'un problème de statique

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Objectifs

À la fin de ce cours, vous serez en mesure de :

- Déterminer le mouvement d'un mécanisme au cours du temps pour des efforts extérieurs connus,
- Déterminer les actions mécaniques dans les liaisons ou dimensionner les actionneurs nécessaires pour faire fonctionner le mécanisme avec un mouvement souhaité.

On utilisera le principe fondamental de la dynamique

Enseignement scientifique électif

Présentation

Description

Les étudiants suivent l'un des cours suivant, au choix :

- acquisition de données spatiales,
- mécanique au service de la santé,
- Python pour l'ingénieur,
- réseaux et machine électrique.

examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Les enseignements électifs sont des cours scientifiques en lien avec le contenu de la préorientation, donc des cours pouvant servir aux futurs ingénieurs des secteurs du Génie Civil et du Génie Mécanique. Ces cours ne sont pas des prérequis pour la suite du cursus de formation.

Pré-requis nécéssaires

Voir les fiches détaillées de chaque enseignement.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes :

Résistance des Matériaux II

Présentation

hyperstatique de degré 1.

Description

Théorie des poutres :

- Passage du système réel au modèle de type poutre : ligne moyenne et propriétés géométriques des sections, liaisons, chargement, matériau élastique linéaire ;
- Rappels de statique à Equilibre à Actions de liaison à Isostaticité et hyperstaticité ;
- Efforts internes : effort normal, flexion, effort tranchant, torsion :
- Champs de contraintes / déformations / déplacements et énergie potentielle de déformation élastique associés aux différents efforts internes ;
- Méthodes de résolution de structures hyperstatiques (par application du principe de superposition et théorème de Castigliano).

Pré-requis nécéssaires

Mécanique Sciences des matériaux Outils mathématiques

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Objectifs

A la fin de ce module, l¿étudiant sera capable d¿évaluer:

Le comportement mécanique des structures isostatiques et hyperstatiques de degré 1 de type « poutre » sous chargement statique :

Modéliser une structure de type « poutre » (caractéristiques géométriques, liaisons et chargements),

Calculer les actions de liaison et efforts internes,

Calculer les champs de contraintes, de déformations et de déplacements associés à chaque type dieffort interne,

Calculer l'énergie potentielle de déformation élastique, Appliquer les méthodes de résolution pour structure

Lieu(x)

Science des Matériaux

Présentation

Description

Pour la partie matériaux communs

6 CMs de 1,25h

Cristallographie des métaux et des céramiques – Structures amorphes

Thermodynamique des alliages métalliques binaires : Energie libre de Gibbs - Entropie - Enthalpie Alliage métallique binaire Fer-Carbone : Diagramme d'équilibre de phases - Transformation eutectoïde

Comportement mécanique des matériaux de construction à température ambiante : Elasticité – Plasticité – Ductilité - Fragilité

Propriétés mécaniques d'usage des matériaux et Essais mécaniques à température ambiante

Propriétés physiques des matériaux de construction et Essais non Destructifs associés

Propriétés chimiques des matériaux de construction et phénomènes de Corrosion

Thèmes de TD: 4 TDs de 1,25h

1/ Cristallographie : Motif – Densité atomique – Indices de Miller

2/ Diagramme de phase : Diagramme Fer-Carbone – Détermination le la microstructure d'un acier à température ambiante

3/ Propriétés mécaniques : Courbe de traction et Ecouissage – Energie de déformation

4/ Propriété chimiques : Corrosion

Séance de Travaux Pratiques : 2 TPs de 3h

TP1 Essais mécaniques : essai de traction - Essai de

Dureté

TP2 Essais Chimiques

Objectifs

L'étudiant devra être capable :

- De faire le lien entre les propriétés mécaniques, physiques et chimiques des matériaux pour la construction (métaux, céramiques et polymères) et les caractéristiques de ces matériaux à l'échelle atomique (cristallographique) et microstructurale (diagramme de phase binaire)

Pré-requis nécéssaires

Pour le tronc commun de matériaux : Notion de Cristallographie et de Thermodynamique de 1A

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Environnement de la Construction et Matériaux GC

Présentation

Description

Partie matériaux GC: 18,75h

- 11,25 h Conférence portfolio de matériaux de construction utilisés en Génie civil
- 2,5 h de Travaux dirigés sur les approches ACV et Quantitatifs
- 5 h de TP de matériaux et numérique Partie conception projet : 52 h
- 7,5 h Conférences sur les principes du projet (Architecture et structure)
- 8,75 h Travaux dirigés : analyse architecturale, descente de charges et conception structurale en lien avec les techniques constructives
- 2h une visite de chantier
- 33,75 h de projet en petit groupe sur la base de choix et approche de projet, conception architecturale et structurale, justification des choix, modélisation numérique, quantification, détails de conception technique, définition et calculs de transferts des efforts et étude d'impact environnemental des matériaux construction.

- Découvrir les concepts de l'eco-conception
- Conduire des conceptions de programmes architecturaux
- Définir, choisir et prescrire des matériaux de construction
- Justifier et évaluer l'impact environnemental des solutions prescrites
- Concevoir la structure porteuse de bâtiments (charges verticales uniquement)
- Calculer et prévoir le transfert des charges (charges gravitaires et exploitation uniquement)

Ce cours est conçu en relation étroite avec une montée en compétences des méthodes de projet de génie civil, utilisation des outils numériques, développent des pratiques du projet de conception, la découverte de la conception architecturale, le choix des techniques et des matériaux de construction et l'utilisation et le développement d'approches multicritères et quantitatives.

Le module permet de présenter le double cursus Architecte ingénieur, développe l'esprit d'analyse et les méthodes de conception des projets de bâtiments s'inscrivant dans un tissu urbain. Le projet est également le support de pratique des concepts de la Résistance des Matériaux 2 vu lors du S4 avec la compréhension de poutres, charges et l'application concrète des principes de la statique.

Objectifs

L'étudiant devra être capable de :

- Connaître et développer les matériaux de Génie civil
- De développer une culture interdisciplinaire autour du développement urbain durable,
- De s'immerger dans la complexité des projets de conception de génie civil et dans des logiques de décision multicritère, multi-acteurs et multi-échelles spatiale et temporelle.

Pré-requis nécéssaires

Conception GC BIM avec outil lié à l'utilisation d'un modeleur 3D, Approche technique des familles et objets paramétriques, approche collaborative.

RDM 1 savoir utiliser le Principe Fondamental de la Statique.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Conception et Matériaux GM

Présentation

Description

Pour la partie matériaux communs

6 CMs de 1,25h

Cristallographie des métaux et des céramiques – Structures amorphes

Thermodynamique des alliages métalliques binaires : Energie libre de Gibbs - Entropie - Enthalpie Alliage métallique binaire Fer-Carbone : Diagramme d'équilibre de phases - Transformation eutectoïde

Comportement mécanique des matériaux de construction à température ambiante : Elasticité – Plasticité – Ductilité - Fragilité

Propriétés mécaniques d'usage des matériaux et Essais mécaniques à température ambiante

Propriétés physiques des matériaux de construction et Essais non Destructifs associés

Propriétés chimiques des matériaux de construction et phénomènes de Corrosion

Thèmes de TD: 4 TDs de 1,25h

- 1/ Cristallographie : Motif Densité atomique Indices de Miller
- 2/ Diagramme de phase : Diagramme Fer-Carbone Détermination le la microstructure d'un acier à température ambiante
- 3/ Propriétés mécaniques : Courbe de traction et Ecouissage Energie de déformation
- 4/ Propriété chimiques : Corrosion

Séance de Travaux Pratiques : 2 TPs de 3h

TP1 Essais mécaniques : essai de traction - Essai de

Dureté - Essai de Résilience

TP2 Essais Chimiques

Si l'étudiant choisit d'aborder les objectifs avec des

supports orientés « Génie Mécanique »

- 35,5h pour un projet de conception mécanique, à travers l'étude d'un projet en petit groupe, les étudiants abordent l'analyse fonctionnelle, la modélisation (schématisation), la recherche de solutions, le pré-dimensionnement et la réalisation d'une "maquette numérique" en utilisant un logiciel de CAO. Les étudiants complètent leurs connaissances nécessaires au développement du projet par diverses documentations à leur disposition : documents ressources sur la plate-forme "moodle", livres, internet. 8h de TP sur les montages de roulements,
- A partir des éléments mis à leur disposition, (roulement, arbres logements engrenages, clavettes, anneaux élastiques, écrous à encoches... les étudiants doivent analyser, concevoir et réaliser des montages de roulements conformes aux règles en vigueur.
- 6h sur l'étude et le fonctionnement des différents moteurs thermiques. Par l'intermédiaire de supports visuels, les étudiants découvrent les différents cycles des moteurs thermiques, les systèmes de distribution et d'alimentation, les principes des turboréacteurs et turbopropulseurs. Ils identifient différents les éléments fonctionnels d'un moteur à partir d'un plan d'ensemble.

Matériaux pour la Construction mécanique - Cours (7,5h)

- Transformations de phases en condition d'équilibre : transformations isothermes (eutectoïde et eutectique) et non isothermes
- Diffusion : Lois de Fick (unidirectionnelles)
- Mécanismes de Germination-Croissance d'une nouvelle phase (à partir d'un liquide ou d'une phase solide)
- Propriétés mécanique des alliages métalliques : Tenue en Fatigue et Comportement en présence de fissures

Thèmes de TD (5h)

- 1: Usage des lois de Fick en Cémentation des Aciers
- 2 : Analyse de l'évolution microstructurale des aciers
- 3 : Ecrouissage Introduction aux Contraintes Résiduelles

4 : Limite Conventionnelle de fatigue et Diagramme de fatigue (Haig)

Travaux Pratiques (6h)

TP1 Essai mécanique : Effet du laminage à froid sur les

propriétés de traction - Alliage Al20217

TP2 Microstructure : Microstructures des Aciers et des

Fontes Blanches

1 Contrôle Certificatif 1,75h

Si l'étudiant choisit d'aborder les objectifs avec des supports orientés « Génie civil »

Partie matériaux GC: 18,75h

- 11,25 h Conférence portfolio de matériaux de construction utilisés en Génie civil
- 2,5 h de Travaux dirigés sur les approches ACV et Quantitatifs
- 5 h de TP de matériaux et numérique Partie conception projet : 52 h
- 7,5 h Conférences sur les principes du projet (Architecture et structure)
- 8,75 h Travaux dirigés : analyse architecturale, descente de charges et conception structurale en lien avec les techniques constructives
- 2h une visite de chantier
- 33,75 h de projet en petit groupe sur la base de choix et approche de projet, conception architecturale et structurale, justification des choix, modélisation numérique, quantification, détails de conception technique, définition et calculs de transferts des efforts et étude d'impact environnemental des matériaux construction.

Objectifs

L'étudiant devra être capable :

- De faire le lien entre les propriétés mécaniques, physiques et chimiques des matériaux pour la construction (métaux, céramiques et polymères) et les caractéristiques de ces matériaux à l'échelle atomique (cristallographique) et microstructurale (diagramme de phase binaire)

- De faire une sélection raisonnée de matériaux métallique pour la construction mécanique en faisant le lien entre les caractéristiques mécaniques et la nature de l'alliage métallique : composition chimique, microstructure, nature des phases, possibilités de traitement thermique ;
- De mettre en œuvre une procédure de conception à partir d'un cahier des charges et d'acquérir une culture technologique.

L'étudiant pourra choisir d'aborder cet objectif général soit avec un support d'enseignement orienté « Génie mécanique » soit orienté « Génie civil ».

- Si l'étudiant choisit d'aborder les objectifs avec des supports orientés « Génie Mécanique » de :
- Proposer, à partir d'un cahier des charges, une ou plusieurs solutions sous forme de schéma cinématique.
- Calculer les puissances mises en jeux et choisir un moteur.
- Concevoir et dimensionner un réducteur simple.
- Concevoir et de dimensionner un montage de roulement à billes à contact radial.
- Calculer l'isostatisme d'un assemblage de pièces fixes et d'un mécanisme mobile.
- Réaliser une maquette numérique du mécanisme avec un logiciel de CAO.
- Faire une présentation orale et écrite du projet.
- Participer et s'investir dans un groupe de travail.
- Identifier les liaisons à mettre en œuvre à partir d'éléments réels pour les roulements.
- Connaitre les cycles 4 temps et 2 temps.
- Connaître les systèmes de distribution et d'alimentation.
- Connaître les principes des turboréacteurs et turbopropulseurs.
- Savoir identifier les éléments fonctionnels d'un moteur à partir d'un plan.
- Connaitre les servitudes, les fonctions secondaires (refroidissement, lubrification, génération électrique,...)
- Connaitre la terminologie des éléments constitutifs.
- Si l'étudiant choisit d'aborder les objectifs par des supports orientés « Génie Civil » de :
- De développer une culture interdisciplinaire autour du développement urbain durable,
- De s'immerger dans la complexité des projets de conception de génie civil et dans des logiques de décision multicritère, multi-acteurs et multi-échelles

spatiale et temporelle.

- Découvrir les concepts de l'eco-conception
- Conduire des conceptions de programmes architecturaux
- Définir, choisir et prescrire des matériaux de construction
- Justifier et évaluer l'impact environnemental des solutions prescrites
- Concevoir la structure porteuse de bâtiments (charges verticales uniquement)
- Calculer et prévoir le transfert des charges (charges gravitaires et exploitation uniquement)

Ce cours est conçu en relation étroite avec une montée en compétences des méthodes de projet de génie civil, utilisation des outils numériques, développent des pratiques du projet de conception, la découverte de la conception architecturale, le choix des techniques et des matériaux de construction et l'utilisation et le développement d'approches multicritères et quantitatives.

Le module permet de présenter le double cursus Architecte ingénieur, développe l'esprit d'analyse et les méthodes de conception des projets de bâtiments s'inscrivant dans un tissu urbain. Le projet est également le support de pratique des concepts de la Résistance des Matériaux 2 vu lors du S4 avec la compréhension de poutres, charges et l'application concrète des principes de la statique.

le Principe Fondamental de la Statique).

- Si l'étudiant choisit d'aborder les objectifs avec des supports orientés « Génie civil »
- Enseignement I2ICTI31 du semestre 3 Conception GC BIM avec outil lié à l'utilisation d'un modeleur 3D, Approche technique des familles et objets paramétriques, approche collaborative.
- Enseignement I2ICME31 du semestre 3 (savoir utiliser le Principe Fondamental de la Statique).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Pour le tronc commun de matériaux : Notion de Cristallographie et de Thermodynamique de 1A

Si l'étudiant choisit d'aborder les objectifs avec des supports orientés « Génie Mécanique »

- Enseignement I2ICTI31 du semestre 3 (schéma cinématique, Isostatisme appliqué à l'assemblage des pièces fixes, conception d'un montage de roulements à billes à contacts radial, connaître les règles du dessin industriel, savoir utiliser les fonctions de base de CREO.
- Enseignement I2ICME31 du semestre 3 (savoir utiliser

Langue Vivante 2

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé 2A

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Activités Physiques et Sportives

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

