

SEMESTRE 4_2e ANNEE FAS NUMERIQUE

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Signal 1

Présentation

Description

Programme (contenu détaillé):

- Rappels d'analyse hilbertienne : produits scalaires, projection sur un sous-espace vectoriel, approximation dans une base hilbertienne.
- Séries de Fourier : définition, propriétés, théorème de Dirichlet et théorème de Parseval, phénomène de Gibbs.

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts):

- Coefficients de Fourier, sommes partielles et série de Fourier d'une fonction continue par morceaux.
- Différents théorèmes de convergence des séries de Fourier.

L'étudiant.e devra être capable de :

- Calculer les coefficients de Fourier.
- Calculer des séries, résoudre des équations en utilisant ces coefficients.

Intégrales, nombres complexes, séries numériques et séries de fonctions.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Energie Mix et Transition

Présentation

Description

Les principales notions abordées au cours de l'UE sont : les rendements de conversion, de transport, de stockage, d'usage / la densité surfacique de puissance / l'intensité en ressources matérielles / le facteur de charge / la notion de stock et de flux / les profils de production et de demande / la mise en réseau / le mix énergétique / les scénarios de transition énergétique pour 2050.

L'UE aborde les technologies suivantes : production éolienne, stockage par électrolyse (H2), photovoltaïque, batterie électrochimique, hydroélectricité / STEP, centrales thermiques fossile, nucléaire et biomasse, production de biogaz.

Objectifs

Appréhender les enjeux liés à l'indispensable approvisionnement énergétique de notre système productif.

Savoir répondre aux questions suivantes :

- Comment obtenons-nous notre énergie aujourd'hui (connaître les différents moyens de conversion et de stockage, et les différents mix) ?
- Quels sont les ordres de grandeurs et au quotidien pour nos actions individuelles et à l'échelle de la nation
 ?
- Où sont les dépendances, faiblesses et limites de

notre approvisionnement énergétique?

- Comment constituer un mix énergétique qui réponde à un profil de demande jusqu'en 2050 et à l'enjeu de la décarbonation ?

Pré-requis nécéssaires

Connaître les notions de puissance et énergie électriques, ainsi que les notions générales de rendement et de densité.

Avoir acquis les connaissances et compétences de première année INSA en électrocinétique, mécanique du point et thermodynamique.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Analyse 2

Présentation

Description

Suite de fonctions

- 1. Convergence simple, convergence uniforme
- 2. Propriétés des limites de fonctions ISéries de fonctions
- 1. Convergence simple, uniforme, normale
- 2. Propriétés des séries de fonctions
- 3. Cas des séries entières

Équations différentielles ordinaires (EDO) linéaires

- 1. Exemples, cadre général des EDO affines
- 2. Cas particulier des EDO linéaires à coefficients constant

Objectifs

L'étudiant.e devra être capable de :

- Étudier la convergence simple et uniforme d'une suite et d'une série de fonctions
- Étudier des fonctions définies comme des sommes
- Résoudre des équations différentielles linéaires avec ou sans second membre
- Résoudre des systèmes différentielles linéaires avec ou sans second membre

noyau d'une application linéaire

Manipulation des ensembles, calculs de sommes et de series numériques, de derivées, d'intégrales (simples et multiples), d'intégrales généralisées, d' équivalents et de limites.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Algèbre linéaire de première année : espaces vectoriels, applications linéaires, matrices, notion d'image et de

Probabilités et statistiques 1

Présentation

Description

Programme (contenu détaillé):

- Espaces de probabilités
- Probabilités conditionnelles et indépendance d'événements
- Variables aléatoires réelles discrètes/continues et leurs caractéristiques
- Variables aléatoires multidimensionnelles, lois conditionnelles et indépendance
- Théorèmes limites (LGN et TCL) et approximation de lois

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- ce qu'est un espace de probabilité
- la notion de probabilités conditionnelles et d'indépendance entre événements
- ce qu'est une variable aléatoire discrète/continue et ses caractéristiques (densité, espérance, variance, fonction

de répartition, etc)

- comment appliquer les théorèmes limites fondamentaux comme la Loi des Grands Nombres (LGN)

et le Théorème Central Limite (TCL)

- la notion d'estimation statistique (ponctuelle ou par intervalle)

L'étudiant devra être capable de :

- calculer des probabilités d¿événements par les formules de Bayes ou des probabilités totales
- déterminer la loi d'une variable aléatoire, calculer son espérance et sa variance, ses fonctions de répartition et caractéristique, etc '
- établir l'indépendance entre des variables aléatoires lorsqu'elles le sont
- approcher des lois en utilisant les théorèmes limites sous-jacents
- estimer par intervalle de confiance des paramètres inconnus (espérance, variance, proportion) associés à une population de grande taille

Pré-requis nécéssaires

Manipulation des ensembles, calculs de sommes et de series numériques, de derivées, d'intégrales (simples et multiples), d'intégrales généralisées, d' équivalents et de limites.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Algorithmes et Programmation II

Présentation

Infos pratiques

Description

Types abstraits et implémentation.

Structures de données linéaires : piles, files, listes chaînées.

Structures de données arborescentes : arbres binaires, tas binaires, arbres n-aires.

Tables de hachage.

Lieu(x)

Toulouse

Objectifs

Apprendre à implémenter et à utiliser les structures de données linéaires et arborescentes classiques.

Pré-requis nécéssaires

Cours d'algorithmique et programmation I (semestre précédent).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Architecture matérielle

Présentation

Description

- Description fonctionnelle des composants fondamentaux d'un ordinateur classique basé sur un processeur et leurs interactions.
- Description et contextualisation des modèles d'architectures d'ordinateur.
- Description fonctionnelle du processeur, de sa mémoire et de ses caches, ainsi que les technologies associées.
- Description fonctionnelle au niveau matériel de la pagination et de la virtualisation mémoire.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant sera en mesure de décrire le fonctionnement d'un ordinateur à partir de ces éléments internes structurels et définir les actions nécessaires au niveau matériel pour réaliser une tâche donnée.

Pré-requis nécéssaires

Notions élémentaires d'algorithmique et de logique.

Langage C

Présentation

Description

Les aspects conventionnels (variables, types, structures de contrôle, structures itératives) sont présentées ainsi que les points plus spécifiques du langage (opérateurs bit à bit, emploi généralisé des pointeurs, passage de paramètres, entrées/sorties, etc.).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer la programmation d'un langage informatique particulièrement répandu (le C), incluant en particulier les aspects proches du matériel.

Pré-requis nécéssaires

Notions d'assembleur et de programmation dans un langage évolué sont les bienvenus ainsi qu'une connaissance minimum de l'architecture des ordinateur

Cultures et Compétences Numériques 1

Présentation

Description

Cours d'introduction à l'IA : histoire, algorithmes, enjeux.

Découverte "no code" des réseaux de neurones sur Vittascience ; notebook de construction d'un petit réseau de reconnaissance de caractères.

Présentation de PIX et traversée d'un certain nombre de thèmes en autonomie avec l'objectif de passer la certification PIX en fin de 3e année.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant.e aura découvert les premières dimensions du champ de l'IA: historique, exemples de ce que l'I.A. permet, distinction supervisé et non-supervisé, périmètre rapide des techniques et algorithmes, aspects éthiques, risques et controverses. Dans une seconde de partie, l'étudiant.e aura avancé son parcours PIX selon le programme définir.

Pré-requis nécéssaires

rudiments de programmation Python

Outils Mathématiques

Présentation

Description

Programme (contenu détaillé):

Topologie

- 1. Suites dans un EVN
- 2. Topologie: ouverts, fermés, adhérence, densité
- 3. Limite, continuité de fonctions, compacité (Bolzano)+Heine
- 4. Applications linéaires entre EVN : continuité, normes d'application

Analyse numérique:

- 1. Notion d'erreur numérique, représentation des nombres en machine-
- 2. LU Cholesky+ conditionnement-
- 3. SVD
- 4. Moindres Carrés pour Ax=b et Factorisation QR
- 5. Méthode de la puissance
- 6. Méthode de Newton pour résoudre F(X)=0
- 7. Point fixe TP
- 8. Intégration numérique
- 9. Gradient

Probabilité et statistiques

• variables aléatoires multidimensionnelles, lois conditionnelles et indépendance

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts) :

- Des méthodes d'analyse numérique : moindre carrés, Newton, point fixe, interpolation, intégration
- Les notions de normes, de convergence de suite dans un espace vectoriel normé, de limite, de notions topologiques simples : ouverts, fermés, compacité
- Des notions complémentaires à « Outils mats 2 » de probabilités et statistiques

L'étudiant.e devra être capable de :

- Programmer des méthodes d'analyse numérique (Python)
- Manipuler la notion de norme, étudier la topologie d'un sous-ensemble d'un EVN
- Savoir manipuler les variables aléatoires multidimensionnelles, lois conditionnelles et indépendance

Liste des compétences :

- 1_1 : Maitriser les concepts mathématiques et les outils calculatoires de l'ingénieur
- 1_2 : Mettre en place un raisonnement scientifique rigoureux et développer la capacité d'abstraction
- 2_1 :Maitriser les outils fondamentaux de l'ingénieur mathématicien

(matrice de compétences de la CTI de 2019).

Pré-requis nécéssaires

Manipulation des ensembles, calculs de sommes et de séries numériques, de dérivées, d'intégrales (simples et multiples), d'intégrales généralisées, d' équivalents et de limites.

Programmation en langage Python

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Physique 2

Présentation

Description

- Matériaux : Introduction à la science des matériaux Atomistique (structure électronique)

Structure et notion d'ordre dans la matière

La matière cristallisée (réseaux / cristal parfait et cristal réel / défauts cristallins + notion de microstructure)

Propriétés Mécaniques des matériaux cristallins (essai de traction / déformation élastique / déformation plastique / rupture)

- Électromagnétisme :
- 1) complément d'électrocinétique pour la magnétostatique
- 2) force de Lorentz et force de Laplace
- 3) magnétostatique (loi de Biot et savart, théorème d'Ampère).
- 4) Introduction à l'électromagnétisme : approximation ARQS et phénomènes d'induction
- 5) Brève introduction aux ondes (généralités, ondes harmoniques, ondes progressives et stationnaires, interférences et diffraction)
- prérequis : Électrostatique

- Complément d'automatique :

Ce cours traite de la logique séquentielle. La structure générale d'un système séquentiel et des systèmes séquentiels élémentaires sont étudiés (compteur, bascules,). Une méthode de conception des systèmes séquentiels synchrones avec une réalisation par bascules est étudiée.

Ce cours permet de préparer et de réaliser trois séances de travaux pratiques.

Objectifs

L'objectif de ce cours est de donner aux étudiants des compléments de physique pour ceux qui souhaitent poursuivre leur scolarité en AE ou GP.

Le cours contient 3 matières :

- Matériaux : A la fin de ces enseignements, les étudiants devront être capables de décrire les principales propriétés mécaniques macroscopiques des matériaux et d'identifier leurs origines microscopiques en relation avec l'arrangement structural de la matière.
- Électromagnétisme : introduction aux ondes et phénomènes d'induction.
- Complément d'automatique : A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer
- Les notions de systèmes séquentiels,
- Les méthodes de conception et réalisation de ces systèmes,

L'étudiant devra être capable de :

- Concevoir un système logique séquentiel
- A la fin de ce module, l'étudiant devra avoir mis en oeuvre les notions vue en Automatique Continue
- Modélisation d'un système
- -Performances d'un système
- Mise en place de correcteur.

Pré-requis nécéssaires

Électrostatique Logique combinatoire Automatique Continue

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Langue Vivante 2

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé 2A

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Activités Physiques et Sportives

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

