

3e ANNEE ICBE ORIENTATION GB SEMESTRE 6

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Chimie organique

ECTS

Volume horaire

80h

Présentation

expérimentale et les techniques analytiques, générer des données, interpréter, critiquer et valoriser les résultats expérimentaux, communiquer à l'oral).

Description

Stéréochimie : prochiralité, synthèse de composés énantiomériquement purs...

La fonction carbonyle (réactions organiques et anzymatiques apparentées).

- Addition nucléophile : réaction principale des aldéhydes et des cétones
- Substitution nucléophile sur C sp2 : réaction principale des dérivés

Projet expérimental pluridisciplinaire à l'interface de la chimie et de la biologie.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer:

- des mécanismes réactionnels rencontrés en chimie et en biologie.

L'étudiant devra être capable de :

- Appréhender et expliquer mécanismes réactionnels.
- Réaliser un mini-projet expérimental pluridisciplinaire en groupe (concevoir une expérience à partir d'une recherche bibliographique, proposer une démarche de suivi analytique, mettre en oeuvre une démarche

Pré-requis nécéssaires

I1ANETCH Chimie 12BECH10 Chimie organique 12BEBS10 Biochimie Structurale 12BEAN20 Méthodes d'analyse I

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Chimie structurale

Présentation

12BECH10 Chimie organique 12BEBS10 Biochimie Structurale 12BEAN20 Méthodes d'analyse I

Description

Formation aux méthodes spectroscopiques appliquées à une approche rationnelle des déterminations structurales en approfondissant et élargissant les bases théoriques des spectroscopies de Résonance Magnétique Nucléaire, Infra Rouge, Ultra Violette et de Spectrométrie de Masse. Utilisation de la complémentarité de ces différentes techniques pour la détermination de structure de molécules.

Principe et application des méthodes analytiques (RMN, S.Masse, IR, UV) en chimie/biochimie. Spectroscopie RMN 1D et 2D: 1H, 13C. Spectrométrie de masse: El, Cl, Electrospray, MALDI, SIMS

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, léétudiant devra avoir compris et pourra expliquer:

- la théorie et la pratique des principales techniques analytiques utilisées en chimie et en biochimie.

L'étudiant devra être capable de :

- Résoudre la structure de molécules chimiques et biologiques simples en utilisant des méthodes analytiques: RMN, S.Masse, IR, UV.

Pré-requis nécéssaires

I1ANETCH Chimie

Culture et compétences numériques 2

Présentation

Description

Le flot du Machine Learning
La préparation des données
Terminologie du Machine Learning
Types de données
Visualisation, qualité et taille des données
Fiabilité
Quelques fonctions d'activation
Performance du modèle
Impact environnemental

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, qui fait suite au module de 2A, l'étudiant.e aura consolidé sa connaissance du champ de l'IA: accuracy, fonction de perte, overfitting, taille de batch, techniques de visualisation, impact environnemental... Il aura aussi préparé et passé une certification PIX.

Pré-requis nécéssaires

Rudiments de Python

Évaluation

Biophysique

Présentation

Description

Programme (contenu détaillé):

- Introduction à la biophysique
- Structure des protéines
- Canaux ioniques et électrophysiologie
- Marche aléatoire en biologie
- Organisation et dynamique des membranes
- Microscopie et spectroscopie à fluorescence
- Stochasticité dans l'expression des gènes
- Signalisation cellulaire

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer :

Les méthodes avancées en biophysique moléculaire et cellulaire :

- Microscopie à fluorescence et spectroscopie de corrélation
- Cytométrie de flux, cytométrie de flux couplée à l'imagerie et tri
- Electrophysiologie, nanopore pour la détection et séquençage
- PyMol pour la visualisation des protéines
- Techniques de mesures sur surface

Les concepts principaux en biophysique moléculaire et cellulaire :

- Encombrement macromoléculaire
- Le bruit comme principe général dans l'organisation et fonctions biologiques (stochasticité dans l'expression

des gènes, marche aléatoire, changements conformationnels des protéines)

- Signalisation cellulaire dans le temps et l'espace

L'étudiant devra être capable de :

- Interpréter des données d'expériences en biophysique et connecter les résultats aux concepts étudiés.
- Appliquer des informations en biophysique pour résoudre de nouveaux problèmes en biologie et bioingénierie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Bioséparation

Présentation

Description

Bioséparation:

- Précipitation : définition, classification, salting-in, salting-out, précipitation par solvant, par polymères.
- Centrifugation et ultracentrifugation : définition, classification, théorie de la sédimentation, équipements.
- Techniques membranaires : microfiltration, ultrafiltration et nanofiltration, osmose inverse, dialyse, électrodialyse (théorie, mécanismes, appareillage et utilisation).
- Techniques d'électrophorèse : déplacement électrophorétique, électrophorèse sur support (agarose, PAGE, isoélectrofocalisation, électrophorèse 2-D), électrophorèse capillaire.

- les techniques électrophorèses;
- L'étudiant aura également appris :
- à choisir la (les) méthode de bioséparation la plus appropriée à un contexte sur la base de son mécanisme
- à utiliser d'un point de vue pratique le matériel et les techniques adaptées à la purification des protéines et au contrôle de leur purification (ultrafiltration tangentielle, chromatographies basse et moyenne pression, électrophorèse)
- à faire des bilans qualitatifs et quantitatifs pour évaluer les performances d'une ou plusieurs techniques de séparation

Pré-requis nécéssaires

I1ANETCH Chimie
I2BECH10 Chimie organique
I2BEBS10 Biochimie Structurale
I2BEAN20 Méthodes d¿analyses
I2BEGR20 Génie de la réaction

Objectifs

Bioséparation : A la fin de ce module,

L'étudiant devra avoir compris et pourra expliquer :

- les mécanismes exploités par les techniques séparatives couramment utilisées en biochimiebiotechnologies, plus particulièrement dans le cas des biocatalyseurs
- les propriétés des molécules biologiques exploitées lors de l'application des techniques séparatives
- les techniques de précipitation (protéines, acides nucléiques),
- les techniques de centrifugation et d'ultracentrifugation,
- les techniques membranaires (MF, UF, NF, dialyse, électrodialyse)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Enzymologie

Présentation

Description

Description détaillée des:

- Classifications des enzymes, bases de données généralistes et spécialisées
- Modèles cinétiques: enzymes michaeliennes, mécanismes d'inhibitions, modèles cinétiques d'enzymes à plusieurs substrats, enzymes allostériques et régulation
- Principes d'alignements des séquences nucléiques et protéiques (alignement local et global)
- Méthodes d'acquisition des structures 3D des protéines
- Mécanismes catalytiques et visualisation des structures 3D des protéines, analyses des sites actifs

- les bases de données de séquences nucléiques, protéiques et de structures tri-dimensionnelles des enzymes
- les principaux outils informatiques pour réaliser des alignements de séquences (nucléiques ou de structures primaires des protéines) et visualiser des structures tertiaires des protéines afin d'être initié à l'étude des relations existant entre structure et fonction des enzymes.

Pré-requis nécéssaires

I1ANETCH Chimie
I2BECH10 Chimie organique
I2BEBS10 Biochimie Structurale
I2BEAN20 Méthodes d'analyses
I2BEGR20 Génie de la réaction

Objectifs

A la fin de ce module,

l'étudiant devra avoir compris et pourra expliquer :

- l'intérêt de l'étude des enzymes et l'utilisation de ces biocatalyseurs pour les biotechnologies, dans un contexte de transition écologique, de développement durable et de la bioéconomie.
- les méthodes qui permettent de mesurer la vitesse d'une réaction enzymatique
- les équations permettant de modéliser la cinétique des réactions enzymatiques
- l'influence des principaux paramètres physicochimiques sur la vitesse d'une réaction enzymatique
- les méthodes permettant d'analyser la structure des enzymes

L'étudiant aura également appris à utiliser

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Génétique bactérienne

Présentation

Lieu(x)

Toulouse

Description

Les mécanismes entrainant des mutations, ponctuelles ou plus larges, seront passés en revue (agents mutagènes, mécanismes de transfert horizontaux, transposition). Le cours abordera les régulations transcriptionnelles et traductionnelles procaryotes. Il présentera les applications en biotechnologie de ces connaissances, ainsi que les outils de régulation, de mesure de l'expression et de criblage.

Objectifs

L'objectif de cette UE est d'aborder les mécanismes qui permettent aux bactéries de faire évoluer leur séquence génétique et répondre au mieux aux conditions environnementales.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Business Game

Présentation

Description

Simulation de 5 années de vie de l'entreprise (prise de décisions en matière de production, de finance, de mercatique) grâce au jeu d'entreprise SIMGEST.

continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'étudiant devra avoir compris et pourra expliquer l'interdépendance des fonctions de l'entreprise (production, commerciale, financière, ressources humaines) à travers la prise de décisions et l'analyse des résultats économiques et financiers de l'entreprise. Il devra comprendre le mode de fonctionnement d'une entreprise, construire des états financiers, calculer des coûts, créer des outils simples de gestion, optimiser des ressources pour rentabiliser l'entreprise, présenter à l'oral un compte rendu d'activités (en anglais)

Pré-requis nécéssaires

Cours de Gestion Financière de 3A

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en

Gestion financière

Présentation

Infos pratiques

Description

Compte de résultat, Trésorerie, Bilan. Eléments sur les coûts. Le seuil de rentabilité. Prise en compte des stocks dans les états financiers. Financement par emprunts. Rentabilité de l'entreprise.

Lieu(x)

Toulouse

Objectifs

L'étudiant devra avoir compris et pourra expliquer les documents financiers de synthèse de l'entreprise ainsi que les bases du calcul des coûts dans l'entreprise industrielle

Pré-requis nécéssaires

aucun

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Business Communication

Présentation

Description

Les étudiants créeront une start-up fictive dans un marché de leur choix, réaliseront une analyse de marché et identifieront des concurrents. Ils créeront une vidéo GoFUND Me et participeront à des réunions en anglais pour résoudre des défis commerciaux. La présentation finale sera un concours de type "Shark Tank", où les étudiants pitcheront leur projet devant un jury d'investisseurs.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Ce cours vise à développer les compétences essentielles en communication en entreprise. Les étudiants apprendront à comprendre un plan d'affaires simple et l'étude de marché, à animer des réunions et à utiliser le vocabulaire professionnel clé. Ils développeront des compétences pour décrire des graphiques et réaliser des présentations percutantes. Les étudiants apprendront également à pitcher devant des investisseurs, à présenter une entreprise, et à aborder la responsabilité sociale et environnementale au travail.

Pré-requis nécéssaires

Aucun

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Module d'Ouverture Sociétale

Présentation

Lieu(x)

Toulouse

Description

- Ouverture aux enjeux sociétaux (Transition énergétique, Transition écologique, Société numérique, Santé globale, Mobilités et infrastructures)
- Thématiques aux approches interdisciplinaires, mêlant Sciences & Techniques et Sciences Humaines et Sociales ou Thématiques en SHS complémentaires au socle proposé par l'INSA Toulouse.

Objectifs

d'Ouverture Sociétale sont des Les Modules enseignements ouverts aux 5 enjeux sociétaux l'INSA adressés par Toulouse, permettant d'appréhender des situations complexes et couvrant des thématiques non abordées dans les cursus INSA.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

