

3e ANNEE INGENIERIE DE LA CONSTRUCTION

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

EDP, Séries de Fourrier et Analyse Numérique

Présentation

Description

Chapitre 1 - Introduction aux EDP et classification - Pré-requis en algèbre linéaire, en intégration, en résolution d'équations différentielles ordinaires, en fonctions à plusieurs variables ; Terminologie et Exemples d'EDP ; Classification des EDP linéaires d'ordre 2.

Chapitre 2 - Séries de Fourier -

Motivation physique ; Espace des fonctions périodiques de carré intégrable ; Séries trigonométrique ; Coefficient de Fourier ; Série de Fourier dans L^1 (Thm de Dirichlet) puis dans L^2 (Identité de Parseval).

Chapitre 3 - Transformée de Fourier -

Analyse et Synthèse de la transformée de Fourier sur L^1, propriétés algébriques et de dérivation, Tf inverse et Formule de Plancherel, Convolution; TF sur L^2 et exemples illustratifs.

Chapitre 4 - Théorie de Sturm Liouville -Définition, exemples et propriétés des solutions.

Chapitre 5 - Résolution d'EDP par séparation des variables -

Problème bien posé et Conditions aux limites ; Équation de la chaleur 1D homogène ; Équation des ondes 1D homogène ; Généralités sur la méthode de séparation des variables (Eq homogènes, puis avec terme source, puis avec conditions de bord non homogènes, et intérêt de la connaissance du problème de Sturm Liouville associé)

Il sera fourni aux étudiants un polycopié de cours, des énoncés de TD (puis leur corrigés) et de TP. Les TP seront réalisés sous Python

Objectifs

Cette UE a pour objectif de maîtriser quelques concepts mathématiques de base pour l'étude des équations aux dérivées partielles (EDP) par le futur ingénieur en Génie Civil ou Génie Mécanique. Cette UE est naturellement composée de connaissances académiques présentées en cours magistraux, et de savoirs faires calculatoires (étudiés en travaux dirigés) et numériques (mis en œuvre en travaux pratiques).

Les étudiants apprendront à identifier et classifier les en fonction de leur nature (elliptiques, paraboliques, hyperboliques). Ils aborderont les concepts, propriétés et théorèmes de base concernant les séries de Fourier et les transformées de Fourier, qui sont des outils puissants pour résoudre des EDP, en particulier dans les domaines liés aux phénomènes périodiques et aux vibrations. Enfin, la séparation des variables, une technique classique et efficace pour résoudre certaines classes d'EDP, sera formalisée et étudiée. Cette méthode sera illustrée à travers plusieurs exemples concrets liés aux équations de type (phénomène de vibration) chaleur (phénomène de diffusion).

Pré-requis nécéssaires

UE de mathématiques des années 1 et 2. Plus spécifiquement :

- algèbre linéaire (Diagonalisation de matrices)
- intégration (changement de variable, Intégrations par parties)
- résolution d'équations différentielles ordinaires (polynôme caractéristique, solution de l'équation homogène et solution particulière...)

- fonctions à plusieurs variables (dérivation)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

MMC pour les Solides

Présentation

Description

Théorie des contraintes, théorie de la déformation, relation déplacement-déformation, loi de comportement de l'élasticité linéaire, formulation du problème d'élasticité, méthodes analytiques de résolution du problème général de l'élasticité linéaire. Applications en travaux pratiques informatique en langage Python.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) la mécanique des solides déformables, les notions de contraintes, déformation linéarisées, champs de déplacement et relation de comportement en élasticité.

L'étudiant devra être capable de :

- Analyser l'état de contrainte et de déformation d'un solide soumis à un chargement.
- Calculer l'état de contrainte connaissant celui de déformation et réciproquement.
- Calculer l'état de déformation connaissant le champ de déplacement.
- Établir les équations permettant d'écrire l'équilibre local du solide en tout point.
- Proposer une modélisation pertinente d'un problème réel, en particulier au niveau des conditions aux limites.
- Calculer les contraintes à partir des diagrammes des sollicitations intérieurs issue de la théorie des poutres.

Pré-requis nécéssaires

Mathématiques (analyse, algèbre linéaire, analyse numérique), mécanique générale (statique et cinématique), théorie des poutres (sollicitation intérieures, contraintes dans les poutres...), programmation Python.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Mécanique des fluides

Présentation

pratiques

Description

Mécanique des fluides: définitions introductives et propriétés générales d'un fluide, forces agissant sur une particule fluide. Statique des fluides non compressibles et compressibles, manométrie, force de flottabilité, forces et moments exercés par un fluide sur une surface plane et courbe, distribution de la pression en mouvement de corps rigide. Dynamique et cinématique des fluides, équation d'Euler, équation de Bernoulli, conservation de la masse, volume de contrôle et théorème de transport de Reynolds, équation de la quantité de mouvement linéaire.

Objectifs

Mécanique des Fluides:

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- le concept de fluide et de forces agissant sur une particule fluide
- distribution de la pression statique à l'intérieur d'un fluide et forces exercées par le fluide sur une surface solide
- fluide idéal en mouvement: cinématique et dynamique

L'étudiant devra être capable de :

- calculer les forces exercées par un fluide sur des surfaces solides planes et courbes
- utiliser l'eq. de Bernoulli (conservation de l'énergie) et le théorème d'Euler (conservation de la quantité de mouvement) dans une large gamme d'applications

Pré-requis nécéssaires

Des notions de base de thermodynamique permettent une meilleure assimilation des notions fondamentales.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Transition Ecologique, Réduction des GES, Responsabilité et Environnement (TERRE)

Présentation

Description

L'enseignement comprend un atelier « 2 tonnes », qui permet d'appréhender de manière ludique les ordres de grandeurs liés aux objectifs de neutralité carbone en 2050. Il comprend également des T.D. sur les thématiques suivantes : habitat ; production d'électricité ; inégalités et responsabilités ; mobilités ; discours de l'inaction climatique ; agriculture et alimentation; aéronautique. Les étudiants travaillent également sur une problématique complexe liée aux enjeux écologiques, et démarrant leurs réflexions à partir d'un objet ou service de la vie quotidienne.

Objectifs

A la fin de ce module, l'étudiant devra être capable de :

- 🛚 Être à l'aise avec les concepts fondamentaux liés aux émissions GES (gaz à effet de serre), et être capable de faire des calculs simples à ce sujet.
- X Connaître l'ordre de grandeur des grandeurs
- A Être capable d'aller chercher des valeurs d'émission dans la base de données de l'ADEME et de les utiliser à bon escient
- X Penser les enjeux écologiques dans toutes leur complexité et étudier une problématique précise

- X Avoir des notions sur l'analyse de cycle de vie et la mettre en œuvre
- X Être capable de faire des recherches dans la littérature scientifique
- XÊtre capable de comprendre et analyser des figures/données
- X Tirer des conclusions politiques à partir de faits scientifiques et de ses propres valeurs
- A Débattre, discuter et confronter les points de vue

Pré-requis nécéssaires

Notions de base sur l'énergie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Matériaux Cimentaires

Présentation

Lieu(x)

Toulouse

Description

Le cours aborde les thématiques suivantes :

- histoire des matériaux cimentaires
- fabrication et composition des ciments
- structure et texture de la pâte de ciment
- hydratation, prise et durcissement
- comportement du béton durci
- comportement différé des bétons
- durabilité des bétons
- résistance au feu et cycles gel/dégel
- optimisation des formulations

Objectifs

Ce cours développe la culture scientifique des matériaux concernant les matériaux cimentaires.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Double parcours Architecture

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Ecoconception et Ingénierie en Génie Civil

Présentation

Conception mécanique de 2ème année, représentation orthogonale, procédés d'obtention de pièces.

Description

3 modules la composent :

- Conception mécanique : visant à concevoir des liaisons de tout ou partie d'un mécanisme, sur la base de liaisons encastrements démontables et de liaisons pivots (contact direct / coussinets / roulements). Un objectif transversal conséquent consiste à lire et créer un dessin technique en projection orthogonale.
- Tolérencement : visant à proposer des tolérances de fabrication adaptées aux processus d'obtention de pièces. L'axe géométrique est privilégié par la méthode CLIC.
- Analyse de fabrication : visant à analyser, choisir et proposer un procédé d'obtention de pièces ainsi que son montage d'usinage à partir d'un brut donné.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'objectif de cet enseignement est de développer des compétences en conception de liaisons mécaniques, en tolérencement et en analyse de fabrication.

L'unité d'enseignement se positionne à un niveau intermédiaire de savoir-faire, appliqués à des systèmes techniques du domaine de la conception mécanique.

Pré-requis nécéssaires

Technique de recherche d'emploi

Présentation

Niveau C1 min. en français. Cours non ouvert aux étudiants d'échange

Description

Les étudiants réaliseront un bilan personnel, perfectionneront leur CV et lettre de motivation en français et en anglais, et apprendront à rechercher des informations sur les entreprises et le marché de l'emploi. Ils exploreront les techniques de recrutement modernes, les réseaux professionnels et Internet, et créeront un profil Linkedln. Des simulations d'entretien seront proposées pour un stage, et des annonces en français et en anglais seront analysées. L'introduction aux méthodes de recrutement anglo-saxonnes sera également abordée.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

TRE (français):

Développement des compétences pour rechercher des stages ou emplois (bilan personnel, outils de recherche, CV et lettres de motivation adaptés, analyse d'offres en français, préparation aux entretiens, communication interculturelle).

Pré-requis nécéssaires

Job Search

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Cours électif

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

EDP, Séries de Fourrier et Analyse Numérique

Présentation

énoncés de TD (puis leur corrigés) et de TP. Les TP seront réalisés sous Python

Description

Chapitre 1 - Introduction aux EDP et classification - Pré-requis en algèbre linéaire, en intégration, en résolution d'équations différentielles ordinaires, en fonctions à plusieurs variables ; Terminologie et Exemples d'EDP ; Classification des EDP linéaires d'ordre 2.

Chapitre 2 - Séries de Fourier -

Motivation physique ; Espace des fonctions périodiques de carré intégrable ; Séries trigonométrique ; Coefficient de Fourier ; Série de Fourier dans L^1 (Thm de Dirichlet) puis dans L^2 (Identité de Parseval).

Chapitre 3 - Transformée de Fourier -

Analyse et Synthèse de la transformée de Fourier sur L^1, propriétés algébriques et de dérivation, Tf inverse et Formule de Plancherel, Convolution ; TF sur L^2 et exemples illustratifs.

Chapitre 4 - Théorie de Sturm Liouville - Définition, exemples et propriétés des solutions.

Chapitre 5 - Résolution d'EDP par séparation des variables -

Problème bien posé et Conditions aux limites ; Équation de la chaleur 1D homogène ; Équation des ondes 1D homogène ; Généralités sur la méthode de séparation des variables (Eq homogènes, puis avec terme source, puis avec conditions de bord non homogènes, et intérêt de la connaissance du problème de Sturm Liouville associé)

Il sera fourni aux étudiants un polycopié de cours, des

Objectifs

Cette UE a pour objectif de maîtriser quelques concepts mathématiques de base pour l'étude des équations aux dérivées partielles (EDP) par le futur ingénieur en Génie Civil ou Génie Mécanique. Cette UE est naturellement composée de connaissances académiques présentées en cours magistraux, et de savoirs faires calculatoires (étudiés en travaux dirigés) et numériques (mis en œuvre en travaux pratiques).

Les étudiants apprendront à identifier et classifier les EDP en fonction de leur nature (elliptiques, paraboliques, hyperboliques). Ils aborderont les concepts, propriétés et théorèmes de base concernant les séries de Fourier et les transformées de Fourier, qui sont des outils puissants pour résoudre des EDP, en particulier dans les domaines liés aux phénomènes périodiques et aux vibrations. Enfin, la séparation des variables, une technique classique et efficace pour résoudre certaines classes d'EDP, sera formalisée et étudiée. Cette méthode sera illustrée à travers plusieurs exemples concrets liés aux équations de type ondes (phénomène de vibration) ou chaleur (phénomène de diffusion).

Pré-requis nécéssaires

UE de mathématiques des années 1 et 2.

Plus spécifiquement:

- algèbre linéaire (Diagonalisation de matrices)
- intégration (changement de variable, Intégrations par parties)
- résolution d'équations différentielles ordinaires (polynôme caractéristique, solution de l'équation homogène et solution particulière...)
- fonctions à plusieurs variables (dérivation)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

MMC pour les Solides

Présentation

sollicitations intérieurs issue de la théorie des poutres.

Description

Théorie des contraintes, théorie de la déformation. déplacement-déformation, comportement de l'élasticité linéaire, formulation du problème d'élasticité, méthodes analytiques résolution du problème général de l'élasticité linéaire. Applications en travaux pratiques informatique en langage Python.

Pré-requis nécéssaires

Mathématiques (analyse, algèbre linéaire, analyse numérique), mécanique générale (statique cinématique), théorie des (sollicitation poutres intérieures, contraintes dans les poutres...), programmation Python.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) la mécanique des solides déformables, les notions de contraintes, déformation linéarisées, champs de déplacement et relation de comportement en élasticité.

L'étudiant devra être capable de :

- Analyser l'état de contrainte et de déformation d'un solide soumis à un chargement.
- Calculer l'état de contrainte connaissant celui de déformation et réciproquement.
- Calculer l'état de déformation connaissant le champ de déplacement.
- Établir les équations permettant d'écrire l'équilibre local du solide en tout point.
- Proposer une modélisation pertinente d'un problème réel, en particulier au niveau des conditions aux limites.
- Calculer les contraintes à partir des diagrammes des

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Mécanique des fluides

Présentation

Description

Mécanique des fluides: définitions introductives et propriétés générales d'un fluide, forces agissant sur une particule fluide. Statique des fluides non compressibles et compressibles, manométrie, force de flottabilité, forces et moments exercés par un fluide sur une surface plane et courbe, distribution de la pression en mouvement de corps rigide. Dynamique et cinématique des fluides, équation d'Euler, équation de Bernoulli, conservation de la masse, volume de contrôle et théorème de transport de Reynolds, équation de la auantité de mouvement linéaire.

Objectifs

Mécanique des Fluides:

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

- le concept de fluide et de forces agissant sur une particule fluide
- distribution de la pression statique à l'intérieur d'un fluide et forces exercées par le fluide sur une surface solide
- fluide idéal en mouvement: cinématique et dynamique

L'étudiant devra être capable de :

- calculer les forces exercées par un fluide sur des

surfaces solides planes et courbes

- utiliser l'eq. de Bernoulli (conservation de l'énergie) et le théorème d'Euler (conservation de la quantité de mouvement) dans une large gamme d'applications pratiques

Pré-requis nécéssaires

Des notions de base de thermodynamique permettent une meilleure assimilation des notions fondamentales.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Systèmes Dynamiques

Présentation

modélisation des systèmes mécaniques, électriques, thermiques, hydrauliques

Description

Notions fondamentales sur les signaux et les systèmes. Fonctions de transfert des systèmes linéaires invariants en temps. Les systèmes de 1er ordre, 1er ordre généralisé, 2ème ordre, systèmes à retard. Lieu de transfert dans les plans de Bode et son tracé asymptotique. Introduction à la représentation d'état.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris les bases nécessaires sur les signaux et les systèmes linéaires ainsi que les performances dynamiques et fréquentielles des systèmes.

L'étudiant devra être capable de :

- Construire sous Matlab et Simulink un modèle dynamique d'un système à partir de ses équations algèbro-différentielles ;
- Déterminer et analyser les performances dynamiques et fréquentielles d'aun système de complexité moyenne (1er ou 2ème ordre) à partir de son modèle dynamique;
- Faire le dimensionnement préliminaire d'un système de complexité moyenne (1er ou 2ème ordre) pour respecter un cahier des charges dynamique.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Transformé de Laplace. Notions de base sur la

Conception mécanique

Présentation

Description

L'UE se décompose en 3 parties :

1/ Conception Mécanique:

- Modélisation des mécanismes
- Conception des liaisons complètes démontables
- Conception des liaisons pivots : frottement et roulement

2/ Tolérancement :

- Géométrique : méthode ISO

3/ Analyse de Fabrication

continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'objectif de cette unité d'enseignement est d'accroître les compétences en conception et fabrication de produits mécaniques.

Pré-requis nécéssaires

2IC CO12 2IC CT12

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en

Fabrication mécanique

Présentation

compléter un dessin de définition avec les spécifications géométriques correspondantes.

Description

Tolérancement : CM 3,75h, TD 7,5h, Analyse de Fabrication : TD 15h, TP 5h

Pré-requis nécéssaires

Bureau d'études, lecture de plans.

Objectifs

A la fin du module de Tolérancement-Analyse de Fabrication (TAF), l'élève devra être capable d'élaborer une gamme de pièce simple avec les moyens adéquats, après avoir décodé, interprété et/ou réalisé le dessin de définition.

Pour le Tolérancement, l'élève devra maitriser les éléments suivants :

- Concepts et principes de base de la cotation, règles d'écriture, types d'éléments,
- Spécification par zone : Symboles et définition des différentes tolérances géométriques (Forme, Orientation, Position, Battements),
- Références (type d'élément, simple / commune / système),
- Spécification par gabarit : Modificateurs : Maximum M et minimum L de matière, Enveloppe E , tolérance projetée P ,
- Notion de jeu favorable / défavorable dans une liaison.
- Diagramme de tolérance dynamique,
- Ordre de grandeur d'intervalles de tolérance obtenus avec différents procédés de fabrication,

Savoir compléter un tableau de lecture de spécification dimensionnelle et/ou géométrique,

Savoir appliquer la méthode CLIC permettant de

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Transition Ecologique, Réduction des GES, Responsabilité et Environnement (TERRE)

Présentation

Description

L'enseignement comprend un atelier « 2 tonnes », qui permet d'appréhender de manière ludique les ordres de grandeurs liés aux objectifs de neutralité carbone en 2050. Il comprend également des T.D. sur les thématiques suivantes : habitat ; production d'électricité ; inégalités et responsabilités ; mobilités ; discours de l'inaction climatique ; agriculture et alimentation ; aéronautique. Les étudiants travaillent également sur une problématique complexe liée aux enjeux écologiques, et démarrant leurs réflexions à partir d'un objet ou service de la vie quotidienne.

Objectifs

A la fin de ce module, l'étudiant devra être capable de :

- Il Être à l'aise avec les concepts fondamentaux liés aux émissions GES (gaz à effet de serre), et être capable de faire des calculs simples à ce sujet.
- X Connaître l'ordre de grandeur des grandeurs importantes
- Il Être capable d'aller chercher des valeurs d'émission dans la base de données de l'ADEME et de les utiliser à bon escient
- N Penser les enjeux écologiques dans toutes leur complexité et étudier une problématique précise

- X Avoir des notions sur l'analyse de cycle de vie et la mettre en œuvre
- X Être capable de faire des recherches dans la littérature scientifique
- XÊtre capable de comprendre et analyser des figures/données
- X Tirer des conclusions politiques à partir de faits scientifiques et de ses propres valeurs
- X Débattre, discuter et confronter les points de vue

Pré-requis nécéssaires

Notions de base sur l'énergie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Technique de recherche d'emploi

Présentation

Niveau C1 min. en français. Cours non ouvert aux étudiants d'échange

Description

Les étudiants réaliseront un bilan personnel, perfectionneront leur CV et lettre de motivation en français et en anglais, et apprendront à rechercher des informations sur les entreprises et le marché de l'emploi. Ils exploreront les techniques de recrutement modernes, les réseaux professionnels et Internet, et créeront un profil LinkedIn. Des simulations d'entretien seront proposées pour un stage, et des annonces en français et en anglais seront analysées. L'introduction aux méthodes de recrutement anglo-saxonnes sera également abordée.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

TRE (français):

Développement des compétences pour rechercher des stages ou emplois (bilan personnel, outils de recherche, CV et lettres de motivation adaptés, analyse d'offres en français, préparation aux entretiens, communication interculturelle).

Pré-requis nécéssaires

Job Search

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Cours électif

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Mécanique des Fluides

Présentation

Description

Propriétés des fluides réels Écoulements en charge dans des conduites cylindriques (réseau gravitaire; couplage pompe-réseau) Écoulements à surface libre en régime uniforme continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Mécanique des Fluides réels.

En fin de session, l'étudiant sera capable de:

- Appliquer l'équation de Bernoulli généralisée et effectuer des calculs de perte de charge ;
- Dimensionner des réseaux gravitaires et des réseaux en charge;
- Sélectionner une pompe;
- Estimer un débit pour des écoulements uniformes à surface libre.

Pré-requis nécéssaires

Statique des fluides. Écoulement des Fluides parfaits.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en

Transfert Thermique

Présentation

Description

- Généralités.
- conduction, application au mur, cylindre et sphère.
- Convection, méthode de calcul du coefficient d'échange par convection.
- rayonnement, facteur de forme, calcul du flux échangé entre deux surfaces, coefficient d'échange par rayonnement linéarisé.
- Calcul d'ailette.
- Echangeur type radiateur, méthode du DTLM et du NUT.

Objectifs

A la fin de ce cours l'étudiant devra avoir compris et pourra expliquer :

- Le transfert de chaleur dans les solides, les fluides et à distance par rayonnement.
- Le fonctionnement d'une ailette.
- Le fonctionnement d'un échangeur de chaleur type radiateur.

L'étudiant devra être capable de :

- Calculer un flux de chaleur et calculer les températures dans les cas classique du bâtiment.
- Dimensionner une ailette.
- dimensionner un radiateur et calculer la puissance fournie par un radiateur existant.

Pré-requis nécéssaires

Premier principe de la thermodynamique

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Analyse de Structures Statiques

Présentation

Description

- 1. Notion d'hyperstaticité
- 2. Méthode des forces
- 2.1 Système Associé : équivalence statique et équivalence cinématique
- 2.2 Méthode énergétiques
- 2.3 Cas particuliers : treillis articulés
- 2.4 Cas particuliers : poutres continues
- 3. Méthode des déplacements
- 3.1 Analyse cinématique
- 3.2 Moments de blocage et moments d'encastrements
- 3.3 Principe des travaux virtuels pour un Mouvement de Corps Rigide

Objectifs L'évalu

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer :

- la distribution des efforts internes dans les structures sous sollicitations mécaniques statiques (poutres continues, treillis, ossatures, etc.) et celle des champs de contrainte, déformations et déplacements associés;
- les éléments essentiels d'une note de calculs.

L'étudiant devra être capable de :

- formuler et justifier des hypothèses pertinentes pour la résolution statique d'une structure ;
- déterminer le degré d'hyperstaticité d'une structure ;
- résoudre une structure hyperstatique par la mise en œuvre de la méthode des forces ;
- résoudre une structure hyperstatique par la mise en œuvre de la méthode des déplacements ;

- argumenter sur le choix de la méthode de résolution ;
- calculer les réactions d'appui de la structure ;
- tracer les diagrammes des efforts internes (moment fléchissant, effort tranchant, effort normal);
- calculer la déformée de la structure (déplacements, rotations);
- rédiger une note de calculs claire, juste et synthétique.

Pré-requis nécéssaires

Résolution des systèmes isostatiques et détermination des efforts internes.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Approfondissement en Structures

Présentation

Description

Ce module se compose de 3 parties indépendantes.

Un module d'Analyse des Structures Dynamiques présente les bases de modélisation de systèmes sous sollicitation dynamique afin d'en déterminer les modes propres de vibration. La modélisation peut concerner aussi bien des systèmes continus que discret. Les modes propres sont étudiés via une résolution exacte mais aussi par une approximation (méthode de Rayleigh-Ritz).

Un module de Vieillissement des Ouvrages s'intéresse au comportement à long terme des ouvrages de Génie Civil et à leur interaction avec leur environnement : altération physico-chimique et comportement visco-élastique des matériaux du génie civil seront étudiés.

Un module Modélisation d'Ouvrage Existant consiste à choisir un ouvrage réel, en proposer une modélisation de type RDM et rédiger une note de calcul pour en déterminer la répartition des efforts internes.

Pré-requis nécéssaires

- Résistance Des Matériaux ;
- Comportement des Matériaux Cimentaires;
- Principe Fondamental de la Dynamique.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de cours, l'étudiant aura acquis des compétences de bases relatives :

- au comportement dynamique des structures de Génie Civil ·
- à leur vieillissement au cours de leur durée de service .
- à la modélisation RDM à partir d'un système réel.

Approfondissement en Climatique – Aerolitique – Mécanique des Fluides

Présentation

Toulouse

Description

Hydraulique du bâtiment (Réseau Eau Froide, Eaux Usées, Eaux pluviales) initiation à la sécurité incendie pour les ERP (Bases de la règlementation incendie, Bases du dimensionnement des Moyens de Secours)

Objectifs

En fin de session, l'étudiant sera capable de :

- dimensionner une installation Eau Froide/ Eaux usées pour un bâtiment.
- dimensionner des Moyens de Secours pour un ERP

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Culture et compétences numériques 2

Présentation

Description

Le flot du Machine Learning
La préparation des données
Terminologie du Machine Learning
Types de données
Visualisation, qualité et taille des données
Fiabilité
Quelques fonctions d'activation
Performance du modèle
Impact environnemental

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, qui fait suite au module de 2A, l'étudiant.e aura consolidé sa connaissance du champ de l'IA: accuracy, fonction de perte, overfitting, taille de batch, techniques de visualisation, impact environnemental... Il aura aussi préparé et passé une certification PIX.

Pré-requis nécéssaires

Rudiments de Python

Géotechnique 1

Présentation

Toulouse

Description

La géotechnique est l'ensemble des activités liées aux applications de la mécanique des sols, de la mécanique des roches et de la géologie de l'ingénieur.

La géotechnique joue un rôle essentiel dans l'acte de construire pour tous les travaux de bâtiment, de génie civil et d'aménagements.

Objectifs

A l'issue de ce cours, les étudiants seront capables de :

- Citer et mesurer les propriétés physiques d'un sol
- Calculer les contraintes dans un sol
- Calculer les tassements d'un sol
- Calculer la résistance d'un sol

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Béton armé

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Béton Précontraint

Présentation

Description

- Technologie du béton précontraint : armatures, ancrages, vérins, domaine d'application.
- Principaux systèmes utilisés : post-tension, prétension, précontrainte interne, précontrainte externe.
- Sollicitations dues la précontrainte.
- Principes de détermination de la précontrainte minimale.
- Principes de vérification par phase.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- Technologie et calcul simplifié d'une poutre en béton précontraint ;

L'étudiant devra être capable de :

- Déterminer la force de précontrainte minimale pour une poutre isostatique,
- Calculer et vérifier les contraintes sur les fibres extrêmes d'une section droite en béton.

Pré-requis nécéssaires

Mécanique des milieux continus, Mécanique des poutres, Matériau béton

Business Game

Présentation

Description

Simulation de 5 années de vie de l'entreprise (prise de décisions en matière de production, de finance, de mercatique) grâce au jeu d'entreprise SIMGEST.

Objectifs

L'étudiant devra avoir compris et pourra expliquer l'interdépendance des fonctions de l'entreprise (production, commerciale, financière, ressources humaines) à travers la prise de décisions et l'analyse des résultats économiques et financiers de l'entreprise. Il devra comprendre le mode de fonctionnement d'une entreprise, construire des états financiers, calculer des coûts, créer des outils simples de gestion, optimiser des ressources pour rentabiliser l'entreprise, présenter à l'oral un compte rendu d'activités (en anglais)

Pré-requis nécéssaires

Cours de Gestion Financière de 3A

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Gestion financière

Présentation

Description

Compte de résultat, Trésorerie, Bilan. Eléments sur les coûts. Le seuil de rentabilité. Prise en compte des stocks dans les états financiers. Financement par emprunts. Rentabilité de l'entreprise.

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'étudiant devra avoir compris et pourra expliquer les documents financiers de synthèse de l'entreprise ainsi que les bases du calcul des coûts dans l'entreprise industrielle

Pré-requis nécéssaires

aucun

Évaluation

Business Communication

Présentation

Aucun

Description

Les étudiants créeront une start-up fictive dans un marché de leur choix, réaliseront une analyse de marché et identifieront des concurrents. Ils créeront une vidéo GoFUND Me et participeront à des réunions en anglais pour résoudre des défis commerciaux. La présentation finale sera un concours de type "Shark Tank", où les étudiants pitcheront leur projet devant un jury d'investisseurs.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Objectifs

Ce cours vise à développer les compétences essentielles en communication en entreprise. Les étudiants apprendront à comprendre un plan d'affaires simple et l'étude de marché, à animer des réunions et à utiliser le vocabulaire professionnel clé. Ils développeront des compétences pour décrire des graphiques et réaliser présentations percutantes. Les étudiants apprendront également à pitcher devant des investisseurs, à présenter une entreprise, et à aborder la responsabilité sociale et environnementale au travail.

Lieu(x)

Toulouse

Pré-requis nécéssaires

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Module d'Ouverture Sociétale

Présentation

Description

- Ouverture aux enjeux sociétaux (Transition énergétique, Transition écologique, Société numérique, Santé globale, Mobilités et infrastructures)
- Thématiques aux approches interdisciplinaires, mêlant Sciences & Techniques et Sciences Humaines et Sociales ou Thématiques en SHS complémentaires au socle proposé par l'INSA Toulouse.

évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Les Modules d'Ouverture Sociétale sont des enseignements ouverts aux 5 enjeux sociétaux adressés par l'INSA Toulouse, permettant d'appréhender des situations complexes et couvrant des thématiques non abordées dans les cursus INSA.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit,

Transferts Thermiques I

Présentation

Description

Le cours est structuré en trois parties principales, qui portent sur la convection, la convection et le rayonnement, qui sont les 3 modes de transferts thermiques. Ces trois parties sont développées dans 6 chapitres :

chapitre 1 - introduction aux transferts thermiques

chapitre 2 - principes fondamentaux de la conduction

chapitre 3 - conduction unidirectionnelle stationnaire

chapitre 4 - principes fondamentaux de la convection

chapitre 5 - convection forcée en écoulement externe (sur plaque plane, autour d'un cylindre ou d'une sphère)

chapitre 6 - principes fondamentaux du rayonnement

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Ce cours a pour but de fournir les bases nécessaires à la compréhension et la modélisation des transferts thermiques.

Pré-requis nécéssaires

Ce cours ne nécessite pas de prérequis particulier, si ce n'est des notions de base en mathématiques.

Contrôle des Systèmes – Asservissements

ECTS

Volume horaire 103h

Présentation

Description

- A) Analyse des systèmes asservis : lieux de transfert en boucles ouverte et fermée, dilemme précision-stabilité,
- B) Synthèse des systèmes asservis : corrections série, parallèle, par anticipation et par retour d'état.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) les bases des asservissements linéaires dans les domaines fréquentiel et temporel.

L'étudiant devra être capable de synthétiser, à l'aide des outils informatiques, un correcteur qui assure un set de performances requises pour un procédé de complexité moyenne.

Pré-requis nécéssaires

Étude des Systèmes

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Systèmes Logiques

Présentation

Description

- A) Logique combinatoire : algèbre de Boole, représentation et minimisation des fonctions
- B) Logique séquentielle : conception des systèmes séquentiels dans le domaine de la production
- étude détaillée d'un langage de spécification : le Grafcet
- étude du langage Statechart
- définition des modes de marche et d'arrêt par l'utilisation conjointe des deux langages.
- C) Réalisation des systèmes de commande à partir d'automates programmables

Objectifs

A la fin de ce module, l'étudiant devra avoir compris les outils et méthodes de spécification des modes de marche et d'arrêt des systèmes automatisés de production.

L'étudiant devra être capable de :

- Concevoir la partie commande d'un système automatisé de production séquentiel.
- Implémenter sur un automate programmable l'ensemble des modes de marche et d'arrêt d'un système automatisé de complexité moyenne.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Introduction à l'Ingénierie des Systèmes

Présentation

Description

Principaux concepts introduits:

Analyse des besoins et conception préliminaire Modélisation dynamique et identification des systèmes technologiques multiphysiques.

Contrôle PID et implémentation numérique.

Études de cas:

Ce cours prendra comme études de cas le contrôle thermique et le contrôle d'attitude des Cubesats.

Pour des raisons pédagogiques, les approches seront volontairement simplifiées, et l'implémentation numérique des correcteurs se fera sur des cartes Arduino.

Objectifs

Les systèmes mécatroniques et spatiaux sont des systèmes complexes qui doivent souvent répondre à des exigences spécifiques et rigoureuses en fonction de l'application. Ils nécessitent le développement conjoint de systèmes technologiques et de logiciels de contrôle. Ce cours fournit une introduction aux concepts et au développement de tels systèmes.

Pré-requis nécéssaires

Cours de systèmes dynamiques

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Culture et compétences numériques 2

Présentation

Description

Le flot du Machine Learning
La préparation des données
Terminologie du Machine Learning
Types de données
Visualisation, qualité et taille des données
Fiabilité
Quelques fonctions d'activation
Performance du modèle
Impact environnemental

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, qui fait suite au module de 2A, l'étudiant.e aura consolidé sa connaissance du champ de l'IA: accuracy, fonction de perte, overfitting, taille de batch, techniques de visualisation, impact environnemental... Il aura aussi préparé et passé une certification PIX.

Pré-requis nécéssaires

Rudiments de Python

Évaluation

Conception Mécanique

Présentation

Description

- Une première partie sur la modélisation d'une architecture mécanique à l'aide d'un logiciel de simulation multiphysique : Faire le lien modèle / réel, paramétrage, validation du modèle et exploitation des résultats
- Une partie sur la modélisation cinématique d'un système complexe (lecture de plan --> schéma cinématique, hyperstatisme, liaisons équivalentes)
- Une dernière partie sur des compétences de conception et dimensionnement de systèmes mécaniques. Les apprentissages seront axés sur les actionneurs (vérins et moteurs) et les liaisons pivots.
- Un projet, réalisé par petits groupes sur l'ensemble du semestre, permettra de compléter et renforcer les connaissances acquises sur les parties précédentes.
- Démontage de boîtes de vitesses et différentiels lors de séances de TP

Objectifs

A la fin du module, l'étudiant doit être capable de :

- Valider un modèle de simulation et exploiter les résultats.
- Analyser un système technologique à partir d'un plan ou de l'objet réel (décrire son fonctionnement, son comportement lors de différentes phases d'utilisation, identifier les composants assurant les différentes fonctions, ...), réaliser son schéma cinématique et architectural en 3D, calculer et éventuellement modifier

son degré d'hyperstatisme.

- Choisir un actionneur (technologie et dimensionnement)
- Concevoir et dimensionner une liaison pivot avec roulements à contact radial (tous types de charges extérieures)
- Réaliser une chaîne de cote

Pré-requis nécéssaires

Lecture de plans

Mécanique générale (Liaisons cinématiques, PFS, PFD) Des notions de technologie mécanique

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Commande Numérique et Fabrication Assistée par Ordinateur

Présentation

Description

FAO - CN - NUM : 2,5TD + 24TP

Objectifs

Cette unité de formation (UF) est une d'initiation aux techniques de réalisation/contrôle des pièces mécaniques.

A la fin de cette UF, l'étudiant devra avoir compris et saura expliquer les principaux concepts de la Fabrication Assistée par Ordinateur (FAO) et de la Commande Numérique (CN) des machines outils de tournage et fraisage ainsi que les principaux concepts de la numérisation (NUM) associée à la rétro conception.

Pré-requis nécéssaires

Bureau d'Études (S5-3IC) Tolérancement et Analyse Fonctionnelle (S5-3IC)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en

continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Métrologie

Présentation

Description

CM 8,75h, TD 10h, TP 8h

Objectifs

A la fin de cette UE, l'élève devra être capable de :

- _ Adopter une méthodologie permettant de mener à bien le développement d'un produit dans une démarche qualité,
- _ Comprendre quels sont les acteurs et identifier la documentation générée,
- _ Interpréter la mise en œuvre des moyens et des méthodes de production et d'assemblage, de contrôle et d'amélioration des produits.

Concernant les moyens et méthodes de contrôle, l'élève devra être capable:

- _ D'avoir des notions de contrôles de coût / qualité / délai à tous les niveaux du cycle de développement et de fabrication, l'objectif étant une maitrise de la qualité géométrique d'un produit,
- _ De connaître les principaux moyens techniques utilisés pour le contrôle dimensionnel et géométrique des pièces mécaniques,
- _ De savoir établir une gamme de contrôle d'une spécification par zone ou par gabarit, sur marbre ou sur MMT,
- _ De connaître les principaux critères d'association des surfaces (Moindres carrés, Moindres carrés tangents, Mini-Maxi),
- _ D'être capable de caractériser un appareil de mesure (étalonnage, interprétation de des incertitudes de

mesures etc...),

_ D'avoir quelques notions sur la cotation fonctionnelle arithmétique et statistique.

Pré-requis nécéssaires

Bureau d'études (cf. UE 3ICCM51 - Conception Mécanique)

Connaissances en Tolérancement (dimensionnel, géométrique), et Analyse de Fabrication (cf. UE 3ICCM51 - TAF du S5)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Traitement Thermique et Soudage

Présentation

techniques Arc Electrique EE (Electrode Enrobée), MIG (Métal Inert Gas) et TIG (Tungsten Inert Gas)

Description

en Traitement thermique
 Les Aciers Spéciaux de Construction Mécanique
 Concepts de traitements thermiques des Aciers: Trempe
 Revenu

Mise en œuvre d'une méthode de choix de conditions de traitements thermique: méthode IRSID-OTUA Mise en œuvre des traitements thermiques Caractérisation mécanique de pièces mécaniques traitées: Essais de dureté - Essai de traction

- en soudage Concepts en soudage arc électrique Mise en œuvre des techniques EE, MIG et TIG sur Acier

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de cette UE, l'élève devra être capable de :

- En traitement thermique
- * Faire la différence entre les aciers spéciaux de construction mécanique adaptés aux traitements thermiques
- * Savoir choisir les conditions de traitement thermique adapté aux performances attendues des pièces mécanique
- * Savoir identifier les différentes phases présentes dans l'alliage à l'issue du traitement thermique

En technique de soudage

- * Savoir choisir une technique de soudage pour une conception donnée
- * Savoir choisir les paramètres de soudage pour les

Business Game

Présentation

Description

Simulation de 5 années de vie de l'entreprise (prise de décisions en matière de production, de finance, de mercatique) grâce au jeu d'entreprise SIMGEST.

Objectifs

L'étudiant devra avoir compris et pourra expliquer l'interdépendance des fonctions de l'entreprise (production, commerciale, financière, ressources humaines) à travers la prise de décisions et l'analyse des résultats économiques et financiers de l'entreprise. Il devra comprendre le mode de fonctionnement d'une entreprise, construire des états financiers, calculer des coûts, créer des outils simples de gestion, optimiser des ressources pour rentabiliser l'entreprise, présenter à l'oral un compte rendu d'activités (en anglais)

Pré-requis nécéssaires

Cours de Gestion Financière de 3A

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Gestion financière

Présentation

Description

Compte de résultat, Trésorerie, Bilan. Eléments sur les coûts. Le seuil de rentabilité. Prise en compte des stocks dans les états financiers. Financement par emprunts. Rentabilité de l'entreprise.

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'étudiant devra avoir compris et pourra expliquer les documents financiers de synthèse de l'entreprise ainsi que les bases du calcul des coûts dans l'entreprise industrielle

Pré-requis nécéssaires

aucun

Évaluation

Business Communication

Présentation

Aucun

Description

Les étudiants créeront une start-up fictive dans un marché de leur choix, réaliseront une analyse de marché et identifieront des concurrents. Ils créeront une vidéo GoFUND Me et participeront à des réunions en anglais pour résoudre des défis commerciaux. La présentation finale sera un concours de type "Shark Tank", où les étudiants pitcheront leur projet devant un jury d'investisseurs.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Objectifs

Ce cours vise à développer les compétences essentielles en communication en entreprise. Les étudiants apprendront à comprendre un plan d'affaires simple et l'étude de marché, à animer des réunions et à utiliser le vocabulaire professionnel clé. Ils développeront des compétences pour décrire des graphiques et réaliser présentations percutantes. Les étudiants apprendront également à pitcher devant des investisseurs, à présenter une entreprise, et à aborder la responsabilité sociale et environnementale au travail.

Lieu(x)

Toulouse

Pré-requis nécéssaires

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Module d'Ouverture Sociétale

Présentation

Description

- Ouverture aux enjeux sociétaux (Transition énergétique, Transition écologique, Société numérique, Santé globale, Mobilités et infrastructures)
- Thématiques aux approches interdisciplinaires, mêlant Sciences & Techniques et Sciences Humaines et Sociales ou Thématiques en SHS complémentaires au socle proposé par l'INSA Toulouse.

évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Les Modules d'Ouverture Sociétale sont des enseignements ouverts aux 5 enjeux sociétaux adressés par l'INSA Toulouse, permettant d'appréhender des situations complexes et couvrant des thématiques non abordées dans les cursus INSA.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit,

