

3e ANNEE INGENIERIE DES MATERIAUX, COMPOSANTS ET SYSTEMES

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Approfondissement des circuits électroniques

Présentation

Description

Caractéristiques électriques des diodes et des transistors (MOS, JFET et bipolaires). Circuits de polarisation et classes correspondantes. Modèles des composants actifs et schémas équivalents en BF et en HF. Fonctions et circuits correspondants (régulation de courant, miroir de courant, structure différentielle...). Chaîne d'amplification et filtrage avec adaptation d'impédance. Prise en compte des modèles (capteurs et circuits de traitement du signal) dans un logiciel de simulation de circuits.

- Savoir utiliser un logiciel de simulation de circuits électronique et connaître les limites des modèles emplovés.
- Mettre en œuvre une chaîne d'amplification et filtrage en vue de son intégration
- Concevoir les circuits pour l'exploitation des différents types de capteurs.
- Concevoir un étage de puissance en prenant en compte les aspects de la dissipation de puissance.

Pré-requis nécéssaires

Cours d'électricité fondamental, lois de Kirchhoff, théorèmes fondamentaux : Thévenin, Norton et superposition, notions de sources de tension et de sources de courant. Transformée de Fourier et de Laplace.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

- Les caractéristiques électriques des diodes et transistors.
- Le concept de point de fonctionnement et de la linéarisation des caractéristiques autour de ce point.
- Reconnaître les différentes classes d'amplification pour l'utilisation des transistors.
- Les concepts de la modélisation en BF et en HF dans le but de concevoir des fonctions élaborées.

L'étudiant devra être capable de :

- Mettre en œuvre un circuit de polarisation adapté à la fonction visée.
- Extraire le schéma équivalent pour un fonctionnement en BF ou en HF.
- Reconnaitre les circuits de base et les mettre en œuvre (miroir de courant, structure différentielle...)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Semiconducteurs

Présentation

Description

Partie 1 : Fondements de la Physique des Matériaux

Présentation des concepts de mécanique quantique à l'origine des structures électroniques de l'atome.

Introduction aux liaisons chimiques et à l'organisation de la matière.

Étude des structures cristallines.

Notion de diagramme de bande permettant de distinguer les isolants, semi-conducteurs et métaux, ainsi que le concept de densité d'états au sein d'un matériau.

Rappels de physique statistique élémentaire pour expliquer comment modifier les densités de charge dans un matériau semi-conducteur via le dopage.

Partie 2: Dopage et Jonction PN

Compréhension des différents types de dopage des semi-conducteurs.

Construction d'un composant simple comme la jonction PN, en introduisant les diagrammes de bande de ces structures à l'équilibre thermodynamique et hors équilibre thermodynamique (sous polarisation ou sous éclairage).

Étude des lois de diffusion des porteurs de charge pour établir les lois régissant les niveaux de courant observés dans les jonctions PN sous polarisation.

Partie 3 : Transistors Bipolaires

Compréhension du fonctionnement de la jonction PN et de son association au sein d'un transistor bipolaire. Explication des diverses propriétés physiques des transistors bipolaires, notamment leur rôle d'amplificateur. Mise en avant des liens entre les propriétés électroniques des composants et les phénomènes physiques, tels que les paramètres physiques des gains en courant Alpha et Beta des transistors bipolaires.

Partie 4: Technologies CMOS

Mise en évidence des liens physiques entre les matériaux et le fonctionnement électronique des capacités MOS, des transistors MOS et leur association à travers les technologies CMOS.

Ce cours vise à doter les étudiants des connaissances fondamentales et des compétences pratiques nécessaires pour comprendre et appliquer les principes de la physique des matériaux et des composants dans les technologies de l'information.

Partie 5 : Travaux Pratiques

Dans le cadre de notre module sur les matériaux semiconducteurs et leur caractérisation, tu auras l'opportunité de participer à 7 heures de travaux pratiques en salle blanche au sein de l'AIME. Ces séances te permettront de mettre en œuvre les connaissances acquises en cours et en TD. Lors de ces travaux pratiques, l'étudiant devra construire et caractériser électriquement des cellules photovoltaïques en suivant le procédé Lumelec développé au sein de l'AIME. Pour plus de détails, le fascicule Lumelec de ce TP est disponible à l'adresse suivante : https://www.ai me-toulouse.fr/wp-content/uploads/2024/04/Fascicul eLumelec_FR_2024.pdf

Ces séances pratiques sont une excellente occasion de renforcer tes compétences techniques et de comprendre les applications concrètes des concepts théoriques abordés en cours.

Objectifs

Objectif du Cours:

Ce cours introduit la physique des matériaux et des composants impliqués dans les technologies associées à la transmission, au traitement et au stockage de l'information. Il se concentre sur les principes fondamentaux intemporels dans un domaine en développement rapide.

Compétences Attendues :

À la fin de ce cours, l'étudiant sera capable de :

Décrire clairement et exprimer les différents principes physiques mis en œuvre dans le traitement, la transmission et le stockage de l'information.

Comprendre globalement les technologies à base de semi-conducteurs, depuis l'atome jusqu'à l'application des composants.

Enrichir sa compréhension des propriétés physiques des semi-conducteurs, en particulier la jonction PN, qui constitue la brique de base technologique présente dans tous les composants modernes, qu'ils soient discrets (comme la diode ou le transistor bipolaire) ou intégrés (comme les transistors à effet de champ).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Modélisation et Analyse des systèmes linéaires continus

Présentation

Description

Ce cours introduit la notion de représentation des systèmes dynamiques par espace d'état. Le lien avec les autres modèles (fonctionne transfert, équation différentielle) est particulièrement discuté tout comme l'obtention d'un modèle obtenu par linéarisation. Plusieurs bases de représentation sont abordés : les formes modale, compagne de commande et compagne d'observation. Nous étudions ensuite comment analyser un système linéaire invariant en terme de réponse temporelle et de propriété de stabilité.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Ce module s'intéresse à la représentation et l'analyse des systèmes dynamiques linéaires continus avec le formalisme de l'espace d'état. Dans ce cadre, l'étudiant devra savoir changer la base de représentation, analyser la stabilité et calculer la réponse temporelle d'un système linéaire invariant.

Pré-requis nécéssaires

- Cours de 2e année IMACS « Systèmes bouclés »

Filtrage numérique

Présentation

Description

- 1. Conversion et traitement des signaux (CAN, CNA, Récurrence) ,
- 2. Systèmes discrets linéaires (Récurrence, transformée en Z, fonction de transfert, réponse impulsionnelle)
- 3. Structure et Synthèse des filtres numériques (Filtres FIR et IIR, Stabilité, Méthode bilinéaire)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Amener à une compréhension des signaux discrets et des

systèmes discrets.

Donner les principes de la théorie du signal ainsi que les méthodes de traitement, en particulier l'analyse spectrale et la synthèse de filtres numériques

Pré-requis nécéssaires

Signaux et système continus :

- Transformée et série de Fourier
- Transformée de Laplace et fonction de transfert continu
- Représentation en diagramme de bode

Analyse numérique

Présentation

Description

Le cours couvre les notions suivantes: erreurs numériques, résolution d'équations non-linéaires, intégration numérique, résolution directe de systèmes linéaires, normes et conditionnement de matrices. méthodes itératives de résolution de systèmes linéaires, méthodes des moindres carrés et équations différentielles ordinaires.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

Quelques notions d'analyse numérique et de calcul scientifique.

L'étudiant devra être capable de :

- Savoir choisir une méthode adaptée à la résolution d'un problème mathématique.
- Utiliser le langage Python pour mettre en œuvre des méthodes d'analyse numérique.

Les notions mathématiques se basent sur de l'algèbre linéaire et de l'analyse de niveau licence. Les travaux pratiques se basent sur de la programmation relativement simple.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Langage C

Présentation

Description

Les aspects conventionnels (variables, types, structures de contrôle, structures itératives) sont présentées ainsi que les points plus spécifiques du langage (opérateurs bit à bit, emploi généralisé des pointeurs, passage de paramètres, entrées/sorties, etc.).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer la programmation d'un langage informatique particulièrement répandu (le C), incluant en particulier les aspects proches du matériel.

Pré-requis nécéssaires

- Notions d'assembleur et de programmation dans un langage évolué sont les bienvenu

Mesures physiques et modélisation statistique

Présentation

Description

Programme (contenu détaillé):

Pour la partie expérimentale :

5 TP de 7 h 30 parmi : Mesure de température, Technique du vide, Laser, Extensomètrie, Couche mince, Mesure Optique.

Chaque TP permet d'aborder la physique des différents capteurs, leur fonctionnement et leur condition d'utilisation. Chaque capteur est ensuite utilisé dans le cadre de différentes mesures qui sont ensuite dépouillées, commentées, critiquées...

Pour la partie statistique :

Modélisation aléatoire des mesures : erreur systématique, erreur aléatoire, intervalles de confiances.

Modèle linéaire : ajustement par moindres carrés, intervalles de prédiction, validation du modèle, choix de modèles..

Initiation à la planification expérimentale : critères d'optimalité, estimation des effets principaux et des effets d'interaction des différents facteurs.

Organisation (déroulement):

Les documents (polycopié de cours, énoncés de TD, sujets d'examens) sont disponibles sur Moodle et distribués aux étudiants.

Le TP sera réalisé avec un outil de traitement de données (Excel, Python¿)

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Le fonctionnement des différents capteurs utilisés pendant les TP. Il saura les mettre en œuvre dans le cadre d'une démarche expérimentale afin de résoudre un problème posé.

Il devra avoir acquis une démarche critique quant aux résultats obtenus.

L'étudiant devra être capable :

- de mettre en place une chaine de mesure à partir de différents capteurs et d'interpréter les résultats obtenus et de porter un regard critique sur les résultats obtenus lors d'une expérience.
- d'analyser et de quantifier les diverses composantes d'une erreur de mesure.
- de construire un modèle statistique à partir d'un ensemble d'observations recueillies afin de confirmer ou infirmer des hypothèses sur le phénomène étudié
- de définir une modélisation aléatoire des mesures, de définir un intervalle de confiance et des tests statistiques
- de planifier des expériences de manière optimale dans des cas simples.
- d'analyser et de quantifier les diverses composantes d'une erreur de mesure.

Pré-requis nécéssaires

Probabilités et Statistique (2ième année IMACS - I2MADOPOMS20)

Objectifs

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Transition Ecologique, Réduction des GES, Responsabilité et Environnement (TERRE)

Présentation

Description

L'enseignement comprend un atelier « 2 tonnes », qui permet d'appréhender de manière ludique les ordres de grandeurs liés aux objectifs de neutralité carbone en 2050. Il comprend également des T.D. sur les thématiques suivantes : habitat ; production d'électricité ; inégalités et responsabilités ; mobilités ; discours de l'inaction climatique ; agriculture et alimentation ; aéronautique. Les étudiants travaillent également sur une problématique complexe liée aux enjeux écologiques, et démarrant leurs réflexions à partir d'un objet ou service de la vie quotidienne.

Objectifs

A la fin de ce module, l'étudiant devra être capable de :

- Il Être à l'aise avec les concepts fondamentaux liés aux émissions GES (gaz à effet de serre), et être capable de faire des calculs simples à ce sujet.
- X Connaître l'ordre de grandeur des grandeurs importantes
- Il Être capable d'aller chercher des valeurs d'émission dans la base de données de l'ADEME et de les utiliser à bon escient
- N Penser les enjeux écologiques dans toutes leur complexité et étudier une problématique précise

- X Avoir des notions sur l'analyse de cycle de vie et la mettre en œuvre
- X Être capable de faire des recherches dans la littérature scientifique
- XÊtre capable de comprendre et analyser des figures/données
- X Tirer des conclusions politiques à partir de faits scientifiques et de ses propres valeurs
- X Débattre, discuter et confronter les points de vue

Pré-requis nécéssaires

Notions de base sur l'énergie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Technique de recherche d'emploi

Présentation

Niveau C1 min. en français. Cours non ouvert aux étudiants d'échange

Description

Les étudiants réaliseront un bilan personnel, perfectionneront leur CV et lettre de motivation en français et en anglais, et apprendront à rechercher des informations sur les entreprises et le marché de l'emploi. Ils exploreront les techniques de recrutement modernes, les réseaux professionnels et Internet, et créeront un profil LinkedIn. Des simulations d'entretien seront proposées pour un stage, et des annonces en français et en anglais seront analysées. L'introduction aux méthodes de recrutement anglo-saxonnes sera également abordée.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

TRE (français):

Développement des compétences pour rechercher des stages ou emplois (bilan personnel, outils de recherche, CV et lettres de motivation adaptés, analyse d'offres en français, préparation aux entretiens, communication interculturelle).

Pré-requis nécéssaires

Job Search

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Cours électif

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Approfondissement des circuits électroniques

Présentation

Description

Caractéristiques électriques des diodes et des transistors (MOS, JFET et bipolaires). Circuits de polarisation et classes correspondantes. Modèles des composants actifs et schémas équivalents en BF et en HF. Fonctions et circuits correspondants (régulation de courant, miroir de courant, structure différentielle...). Chaîne d'amplification et filtrage avec adaptation d'impédance. Prise en compte des modèles (capteurs et circuits de traitement du signal) dans un logiciel de simulation de circuits.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- Les caractéristiques électriques des diodes et transistors.
- Le concept de point de fonctionnement et de la linéarisation des caractéristiques autour de ce point.
- Reconnaître les différentes classes d'amplification pour l'utilisation des transistors.
- Les concepts de la modélisation en BF et en HF dans le but de concevoir des fonctions élaborées.

L'étudiant devra être capable de :

- Mettre en œuvre un circuit de polarisation adapté à la fonction visée.

- Extraire le schéma équivalent pour un fonctionnement en BF ou en HF.
- Reconnaître les circuits de base et les mettre en œuvre (miroir de courant, structure différentielle...)
- Savoir utiliser un logiciel de simulation de circuits électronique et connaître les limites des modèles employés.
- Mettre en œuvre une chaîne d'amplification et filtrage en vue de son intégration
- Concevoir les circuits pour l'exploitation des différents types de capteurs.
- Concevoir un étage de puissance en prenant en compte les aspects de la dissipation de puissance.

Pré-requis nécéssaires

Cours d'électricité fondamental, lois de Kirchhoff, théorèmes fondamentaux : Thévenin, Norton et superposition, notions de sources de tension et de sources de courant. Transformée de Fourier et de Laplace.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Semiconducteurs

Présentation

Description

Partie 1 : Fondements de la Physique des Matériaux

Présentation des concepts de mécanique quantique à l'origine des structures électroniques de l'atome.

Introduction aux liaisons chimiques et à l'organisation de la matière.

Étude des structures cristallines.

Notion de diagramme de bande permettant de distinguer les isolants, semi-conducteurs et métaux, ainsi que le concept de densité d'états au sein d'un matériau.

Rappels de physique statistique élémentaire pour expliquer comment modifier les densités de charge dans un matériau semi-conducteur via le dopage.

Partie 2 : Dopage et Jonction PN

Compréhension des différents types de dopage des semi-conducteurs.

Construction d'un composant simple comme la jonction PN, en introduisant les diagrammes de bande de ces structures à l'équilibre thermodynamique et hors équilibre thermodynamique (sous polarisation ou sous éclairage).

Étude des lois de diffusion des porteurs de charge pour établir les lois régissant les niveaux de courant observés dans les jonctions PN sous polarisation.

Partie 3: Transistors Bipolaires

Compréhension du fonctionnement de la jonction PN et de son association au sein d'un transistor bipolaire. Explication des diverses propriétés physiques des transistors bipolaires, notamment leur rôle d'amplificateur.

Mise en avant des liens entre les propriétés électroniques des composants et les phénomènes physiques, tels que les paramètres physiques des gains en courant Alpha et Beta des transistors bipolaires.

Partie 4: Technologies CMOS

Mise en évidence des liens physiques entre les matériaux et le fonctionnement électronique des capacités MOS, des transistors MOS et leur association à travers les technologies CMOS.

Ce cours vise à doter les étudiants des connaissances fondamentales et des compétences pratiques nécessaires pour comprendre et appliquer les principes de la physique des matériaux et des composants dans les technologies de l'information.

Partie 5: Travaux Pratiques

Dans le cadre de notre module sur les matériaux semiconducteurs et leur caractérisation, tu auras l'opportunité de participer à 7 heures de travaux pratiques en salle blanche au sein de l'AIME. Ces séances te permettront de mettre en œuvre les connaissances acquises en cours et en TD. Lors de ces travaux pratiques, l'étudiant devra construire et caractériser électriquement des cellules photovoltaïques en suivant le procédé Lumelec développé au sein de l'AIME. Pour plus de détails, le fascicule Lumelec de ce TP est disponible à l'adresse suivante : https://www.ai me-toulouse.fr/wp-content/uploads/2024/04/Fascicul eLumelec_FR_2024.pdf

Ces séances pratiques sont une excellente occasion de renforcer tes compétences techniques et de comprendre les applications concrètes des concepts théoriques abordés en cours.

Objectifs

Lieu(x)

Toulouse

Objectif du Cours:

Ce cours introduit la physique des matériaux et des composants impliqués dans les technologies associées à la transmission, au traitement et au stockage de l'information. Il se concentre sur les principes fondamentaux intemporels dans un domaine en développement rapide.

Compétences Attendues :

À la fin de ce cours, l'étudiant sera capable de :

Décrire clairement et exprimer les différents principes physiques mis en œuvre dans le traitement, la transmission et le stockage de l'information.

Comprendre globalement les technologies à base de semi-conducteurs, depuis l'atome jusqu'à l'application des composants.

Enrichir sa compréhension des propriétés physiques des semi-conducteurs, en particulier la jonction PN, qui constitue la brique de base technologique présente dans tous les composants modernes, qu'ils soient discrets (comme la diode ou le transistor bipolaire) ou intégrés (comme les transistors à effet de champ).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Ondes et propagation

Présentation

différents guides d'ondes.

Description

Programme (contenu détaillé):

Électromagnétisme dans les milieux diélectriques, conducteurs et magnétiques. Propagation des ondes électromagnétiques dans les milieux linéaires. homogènes, isotropes. Relations de continuité. Application à la réflexion et à la réfraction. Propagation dans les guides d'ondes métalliques rectangulaires et dans les fibres optiques.

Objectifs

À la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

Les notions fondamentales liées à la propagation des ondes électromagnétiques dans des milieux simples (linéaires, homogènes, isotropes, ainsi que diélectriques, magnétiques ou conducteurs). La réflexion et la réfraction à l'interface de deux milieux, le fonctionnement des guides d'ondes métalliques et diélectriques (fibres optiques) et le transport d'énergie associé.

L'étudiant devra être capable de:

utiliser les équations de Maxwell généralisées aux milieux pour déterminer la nature des ondes électromagnétiques existant dans un système simple (milieu L.H.I., interface entre deux milieux, espace confiné entre deux plaques d'un bon conducteur). Il devra être capable de déterminer les conditions et les caractéristiques des modes qui donnent lieu à la propagation des ondes électromagnétiques dans les

Pré-requis nécéssaires

Électromagnétisme dans le vide

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Mécanique Hamiltonienne

Présentation

Description

Rappel de mécanique Newtonienne, Principe de d'Alembert et travaux virtuels, Formulation Lagrangienne et principe de moindre action d'Hamilton, Formulation Hamiltonienne, Transformations canoniques et crochet de Poisson

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Le principe de d'Alembert, le principe de moindre action, la formulation Lagrangienne et Hamiltonienne de la mécanique, la notion de coordonnées généralisées et de forces généralisée, les transformations canoniques, la représentation de Poisson de la mécanique Hamiltonienne, la notion d'espace des phases.

L'étudiant devra être capable d'utiliser les équations d'Euler Lagrange et les équations d'Hamilton pour étudier le mouvement d'un objet.

Pré-requis nécéssaires

Mécanique du point

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Analyse numérique

Présentation

Description

Le cours couvre les notions suivantes: erreurs numériques, résolution d'équations non-linéaires, intégration numérique, résolution directe de systèmes linéaires, normes et conditionnement de matrices, méthodes itératives de résolution de systèmes linéaires, méthodes des moindres carrés et équations différentielles ordinaires.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Quelques notions d'analyse numérique et de calcul scientifique.

L'étudiant devra être capable de :

- Savoir choisir une méthode adaptée à la résolution d'un problème mathématique.
- Utiliser le langage Python pour mettre en œuvre des méthodes d'analyse numérique.

Pré-requis nécéssaires

Les notions mathématiques se basent sur de l'algèbre linéaire et de l'analyse de niveau licence. Les travaux pratiques se basent sur de la programmation relativement simple.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Langage C

Présentation

Description

Les aspects conventionnels (variables, types, structures de contrôle, structures itératives) sont présentées ainsi que les points plus spécifiques du langage (opérateurs bit à bit, emploi généralisé des pointeurs, passage de paramètres, entrées/sorties, etc.).

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer la programmation d'un langage informatique particulièrement répandu (le C), incluant en particulier les aspects proches du matériel.

Pré-requis nécéssaires

- Notions d'assembleur et de programmation dans un langage évolué sont les bienvenu

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Mesures physiques et modélisation statistique

Présentation

Description

Programme (contenu détaillé):

Pour la partie expérimentale :

5 TP de 7 h 30 parmi : Mesure de température, Technique du vide, Laser, Extensomètrie, Couche mince, Mesure Optique.

Chaque TP permet d'aborder la physique des différents capteurs, leur fonctionnement et leur condition d'utilisation. Chaque capteur est ensuite utilisé dans le cadre de différentes mesures qui sont ensuite dépouillées, commentées, critiquées...

Pour la partie statistique :

Modélisation aléatoire des mesures : erreur systématique, erreur aléatoire, intervalles de configures.

Modèle linéaire : ajustement par moindres carrés, intervalles de prédiction, validation du modèle, choix de modèles,.

Initiation à la planification expérimentale : critères d'optimalité, estimation des effets principaux et des effets d'interaction des différents facteurs.

Organisation (déroulement):

Les documents (polycopié de cours, énoncés de TD, sujets d'examens) sont disponibles sur Moodle et distribués aux étudiants.

Le TP sera réalisé avec un outil de traitement de données (Excel, Python¿)

Le fonctionnement des différents capteurs utilisés pendant les TP. Il saura les mettre en œuvre dans le cadre d'une démarche expérimentale afin de résoudre un problème posé.

Il devra avoir acquis une démarche critique quant aux résultats obtenus.

L'étudiant devra être capable :

- de mettre en place une chaine de mesure à partir de différents capteurs et d'interpréter les résultats obtenus et de porter un regard critique sur les résultats obtenus lors d'une expérience.
- d'analyser et de quantifier les diverses composantes d'une erreur de mesure.
- de construire un modèle statistique à partir d'un ensemble d'observations recueillies afin de confirmer ou infirmer des hypothèses sur le phénomène étudié
- de définir une modélisation aléatoire des mesures, de définir un intervalle de confiance et des tests statistiques
- de planifier des expériences de manière optimale dans des cas simples.
- d'analyser et de quantifier les diverses composantes d'une erreur de mesure.

Pré-requis nécéssaires

Probabilités et Statistique (2ième année IMACS - I2MADOPOMS20)

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes :

examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Transition Ecologique, Réduction des GES, Responsabilité et Environnement (TERRE)

Présentation

Description

L'enseignement comprend un atelier « 2 tonnes », qui permet d'appréhender de manière ludique les ordres de grandeurs liés aux objectifs de neutralité carbone en 2050. Il comprend également des T.D. sur les thématiques suivantes : habitat ; production d'électricité ; inégalités et responsabilités ; mobilités ; discours de l'inaction climatique ; agriculture et alimentation ; aéronautique. Les étudiants travaillent également sur une problématique complexe liée aux enjeux écologiques, et démarrant leurs réflexions à partir d'un objet ou service de la vie quotidienne.

Objectifs

A la fin de ce module, l'étudiant devra être capable de :

- Il Être à l'aise avec les concepts fondamentaux liés aux émissions GES (gaz à effet de serre), et être capable de faire des calculs simples à ce sujet.
- X Connaître l'ordre de grandeur des grandeurs importantes
- Il Être capable d'aller chercher des valeurs d'émission dans la base de données de l'ADEME et de les utiliser à bon escient
- X Penser les enjeux écologiques dans toutes leur complexité et étudier une problématique précise
- X Avoir des notions sur l'analyse de cycle de vie et la mettre en œuvre
- ${\tt X}$ Être capable de faire des recherches dans la littérature scientifique

XÊtre capable de comprendre et analyser des figures/données

- % Tirer des conclusions politiques à partir de faits scientifiques et de ses propres valeurs
- 🛚 Débattre, discuter et confronter les points de vue

Pré-requis nécéssaires

Notions de base sur l'énergie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Technique de recherche d'emploi

Présentation

Niveau C1 min. en français. Cours non ouvert aux étudiants d'échange

Description

Les étudiants réaliseront un bilan personnel, perfectionneront leur CV et lettre de motivation en français et en anglais, et apprendront à rechercher des informations sur les entreprises et le marché de l'emploi. Ils exploreront les techniques de recrutement modernes, les réseaux professionnels et Internet, et créeront un profil LinkedIn. Des simulations d'entretien seront proposées pour un stage, et des annonces en français et en anglais seront analysées. L'introduction aux méthodes de recrutement anglo-saxonnes sera également abordée.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

TRE (français):

Développement des compétences pour rechercher des stages ou emplois (bilan personnel, outils de recherche, CV et lettres de motivation adaptés, analyse d'offres en français, préparation aux entretiens, communication interculturelle).

Pré-requis nécéssaires

Job Search

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Cours électif

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Introduction aux réseaux

Présentation

Cours de Langage C, Système d'exploitation, Algorithmique et Programmation

Description

L'introduction du cours donne une vision générale des applications d'un réseau et de leurs besoins en communication, suivie d'un panorama des réseaux et de leur interconnexion dans le cadre de l'Internet. La partie centrale du cours présente et illustre les notions fondamentales associées à la conception d'un réseau : connectivité, partage des ressources, commutation, qualités de service et architecture (incluant les notions de service et de protocole). Ces concepts sont illustrés et approfondis dans le cadre des réseaux locaux standardisés et de leur connexion à l'Internet TCP/IP. Une étude de cas portant sur les réseaux locaux Ethernet connectés à l'Internet (réseaux équipant les salles de TP) ponctue le cours. Les concepts sont illustrés en travaux dirigés et en travaux pratiques.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Ce cours s'intéresse aux réseaux informatiques (réseaux locaux, réseaux grande distance et Internet) sous l'angle de leurs principaux concepts : connectivité, adressage, partage des ressources + modèles de perte, commutation / routage + modèles de déséquencement, qualité de service, architecture / service / protocole, mécanismes protocolaires de base.

Pré-requis nécéssaires

Langage C et réseaux

Présentation

IMACS) Langage C (3e année IMACS)

Description

Le cours est structuré en 2 parties :

- La première partie présente l'interface de programmation par « socket » (API socket), technologie de base pour coder une application distribuée dans (en particulier) l'Internet
- La seconde partie consiste en un projet de programmation d'une application distribuée dans l'Internet de type client / serveur

L'évaluation des objectifs est faite sur la base d'un rapport de projet et d'une appréciation de l'implication des étudiants durant les séances de TP. Un examen écrit individuel est susceptible de compléter la validation des compétences théoriques.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module :

- l'étudiant devra avoir compris et pourra expliquer les notions fondamentales associées à la programmation d'applications distribuées dans l'Internet via l'API socket
- l'étudiant devra être capable d'utiliser l'API socket pour développer (en langage C) une application distribuée dans l'Internet de type client / serveur

Pré-requis nécéssaires

Introduction aux systèmes d'exploitation Introduction aux réseaux informatiques (3e année

Bases de données

Présentation

Description

L'objectif de ce cours, est l'étude des bases de données relationnelles. Les concepts fondamentaux de modèle relationnel est étudié. Ensuite, l'accent est mis sur l'algèbre relationnelle et le langage SQL pour la manipulation et l'interrogation des bases de données

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts).

- Les différents modèles de bases de données qui existent, leurs avantages et leurs inconvénients
- Le rôle d'un SGBD (Système de gestion de base de données)
- Les contraintes d'intégrité des données
- Les langages de manipulation et d'interrogation des bases de données relationnelles, en particulier l'algèbre relationnelle et le

langage SQL

En pratique, l'étudiant devra être capable de :

- Implémenter une base de données conçue tout en garantissant les contraintes d'intégrité
- Écrire des requêtes en algèbre relationnelle puis les implémenter en SQL pour la manipulation l'interrogation des bases de données relationnelles

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Langage d'assemblage

Présentation

Description

Définition et rôle du langage d'assemblage parmi les outils de programmation.

Notions génériques de langage d'assemblage : opération sur les données (arithmétiques, logiques), accès à la mémoire (modes d'adressage), contrôle d'exécution (traitements conditionnels).

Application à l'architecture ARM.

Appel et retour de sous-programmes, rôle de la pile, interruptions, cas particulier de l'architecture ARM.

Conventions d'appel de fonctions, passage d'arguments, valeur de retour, préservation du

Développement d'applications mixtes langage C langage

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

- Modèle Von Neuman
- Circuit de calcul, de mémorisation, d'entrée-sortie, unité de commande, mécanisme des interruptions, exécution pipeline du niveau instruction
- Jeu d'instructions et programmation en langage d'assemblage
- Les éléments d'une chaîne de développement : compilateur, assembleur, éditeur de liens, loader, déboqueur

L'étudiant devra être capable de :

Comprendre les principes de mise d'un jeu

d'instructions

- Développer un programme en langage d'assemblage sur un microcontrôleur
- Utiliser les outils de développement croisés

Pré-requis nécéssaires

Algorithmique et Programmation de 1ere année.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Architecture matérielle

Présentation

Description

- Description et programmation en langage d'assemblage Arm et x86
- Description et utilisation d'une chaîne de compilation du langage C standardisée via des scripts, ainsi que l'utilisation des outils de débogages associés.
- Description et analyse des principaux aspects des couches basses du logiciel (appels de fonctions, stockage des données, aspects de sécurité associés) au niveau C et langage d'assemblage.
- Description et optimisation de l'utilisation des ressources matérielles et en particulier mémoire.
- Description et analyse de vulnérabilités matérielles.

L'évaluation des au

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant sera en mesure de programmer en langage d'assemblage, d'identifier et corriger des problèmes logiciels (sous-utilisation des ressources, bogues) en langage C et assembleur, et identifier des potentielles vulnérabilités matérielles.

Pré-requis nécéssaires

- Connaissance en architecture des ordinateurs et de la description fonctionnelle interne de celui-ci (processeur, mémoire, caches).
- Langage C.

Culture et compétences numériques 2

Présentation

Description

Le flot du Machine Learning
La préparation des données
Terminologie du Machine Learning
Types de données
Visualisation, qualité et taille des données
Fiabilité
Quelques fonctions d'activation
Performance du modèle
Impact environnemental

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, qui fait suite au module de 2A, l'étudiant.e aura consolidé sa connaissance du champ de l'IA: accuracy, fonction de perte, overfitting, taille de batch, techniques de visualisation, impact environnemental... Il aura aussi préparé et passé une certification PIX.

Pré-requis nécéssaires

Rudiments de Python

Bureau d'étude électronique

Présentation

polarisation, schéma équivalent dynamique

Description

- * formation LTspice (OP, AC, DC, Step, Sweep)
- * étude étage différentiel
- * étude étage émetteur commun, classique, à charge active
- * étude étage de sortie
- * échauffement des transistors, dimensionnement des dissipateurs thermiques
- * optionnellement, routage, réalisation PCB de l'amplificateur Hifi étudié et concu.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'objectif de ce BE est de concevoir et de réaliser sur plaque d'essais un amplificateur à transistors discrets, dans le domaine audio, d'une puissance de 20W environ. Les étages de puissances sont étudiés (pushpull Darlington, composite etc...) ainsi que toute l'architecture classique d'un amplificateur opérationnel (différentiel, charge active...). La problématique de la dynamique de sortie est clairement posée (limite blocage/saturation). La technologie est le transistor bipolaire.

Pré-requis nécéssaires

- * indispensable : bonne maîtrise des lois de bases, (loi des mailles des nœuds, loi d'ohm...)
- * prérequis fortement conseillé : transistor bipolaire,

Signaux aléatoires

Présentation

Description

- Introduction : rappels signaux déterministes, caractérisation spectrale, échantillonnage
- Rappel de théorie des probabilités et variables aléatoires
- Processus aléatoires et signaux aléatoires : caractéristiques du premier et du deuxième ordre. Stationnarité, ergodicité, signaux aléatoires discrets
- Analyse spectrale : Théorème de Wiener-Kintchine
- Filtrage linéaire des signaux aléatoires

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Présenter les concepts de base permettant de caractériser les signaux aléatoires d'un point de vue temporel ou fréquentiel. On insiste notamment sur les propriétés de base : stationnarité, ergodicité, nécessaires à une caractérisation spectrale, utile en électronique ou en automatique. Le relations de filtrage linéaire concluent ce cours.

Pré-requis nécéssaires

Théorie des probabilités, variable aléatoire, série et transformée de Fourier, Systèmes linéaires invariants (Fonction de transfert),

Systèmes de télécommunications

Présentation

Description

Systèmes de télécommunications : débits, diagramme en œil, lignes de transmission, type de codage de l'information en bande de base, modulations analogiques et numériques, diagramme constellation, notion de trame, multiplexages, type d'accès au canal (FDMA, TDMA, CDMA), étalement de spectre,. Une introduction aux télécommunications spatiales sera également faite. Les TDs permettrons d'approfondir les concepts vus en cours et porterons sur des applications connus des systèmes télécommunications (exemple: système USB, Bluetooth, radio FM, etc). Les TPs mettrons en œuvre différents types de modulations analogiques et numériques.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer les principes de fonctionnement des systèmes de télécommunication

L' étudiant saura concevoir l'architecture d'un système de télécommunication: choix de la modulation, de l'accès au canal, etc.

Pré-requis nécéssaires

Traitement de signal - 2IMACS Électronique analogique et numérique 2IMACS

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Commande des systèmes linéaires continus

Présentation

Description

Commande dans l'espace détats : spécifications, observabilité-commandabilité, retour d'état (placement de pôles), observateurs, méthodes algébriques (correcteurs à 1 et 2 degrés de liberté).

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) : Les principales méthodes de synthèse de lois de commande dans l'espace d'états pour les systèmes linéaires invariants dans le temps

Les principes de base de la synthèse d'observateur pour les systèmes linéaires invariants dans le temps L'étudiant devra être capable de :

Définir les caractéristiques majeures de la loi de commande à partir des spécifications

Concevoir la loi de commande dans l'espace d''état (placement de pôles)

Pré-requis nécéssaires

Algèbre linéaire

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Modélisation et commande des systèmes à événements discrets

Présentation

Infos pratiques

Description

Modélisation et Commande de Systèmes à Evénements Discrets : les outils de modélisation (machines à états finis, réseaux de Petri, Statecharts) et les techniques de mise en œuvre associées (Automate programmables, FPGA, cible temps réel)

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Les principes de base des outils de modélisation des systèmes à événements discrets (Machines à Etats Finis, Statecharts, Réseaux de Petri),

Différentes techniques pour la commande d'un système à événements discrets (FPGA, API, cible temps réel).

L'étudiant devra être capable de :

De modéliser et d'implémenter la commande d'un système à événements discrets

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Business Game

Présentation

Description

Simulation de 5 années de vie de l'entreprise (prise de décisions en matière de production, de finance, de mercatique) grâce au jeu d'entreprise SIMGEST.

Objectifs

L'étudiant devra avoir compris et pourra expliquer l'interdépendance des fonctions de l'entreprise (production, commerciale, financière, ressources humaines) à travers la prise de décisions et l'analyse des résultats économiques et financiers de l'entreprise. Il devra comprendre le mode de fonctionnement d'une entreprise, construire des états financiers, calculer des coûts, créer des outils simples de gestion, optimiser des ressources pour rentabiliser l'entreprise, présenter à l'oral un compte rendu d'activités (en anglais)

Pré-requis nécéssaires

Cours de Gestion Financière de 3A

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Gestion financière

Présentation

Description

Compte de résultat, Trésorerie, Bilan. Eléments sur les coûts. Le seuil de rentabilité. Prise en compte des stocks dans les états financiers. Financement par emprunts. Rentabilité de l'entreprise.

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'étudiant devra avoir compris et pourra expliquer les documents financiers de synthèse de l'entreprise ainsi que les bases du calcul des coûts dans l'entreprise industrielle

Pré-requis nécéssaires

aucun

Évaluation

Business Communication

Présentation

Aucun

Description

Les étudiants créeront une start-up fictive dans un marché de leur choix, réaliseront une analyse de marché et identifieront des concurrents. Ils créeront une vidéo GoFUND Me et participeront à des réunions en anglais pour résoudre des défis commerciaux. La présentation finale sera un concours de type "Shark Tank", où les étudiants pitcheront leur projet devant un jury d'investisseurs.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Objectifs

Ce cours vise à développer les compétences essentielles en communication en entreprise. Les étudiants apprendront à comprendre un plan d'affaires simple et l'étude de marché, à animer des réunions et à utiliser le vocabulaire professionnel clé. Ils développeront des compétences pour décrire des graphiques et réaliser des présentations percutantes. Les étudiants apprendront également à pitcher devant des investisseurs, à présenter une entreprise, et à aborder la responsabilité sociale et environnementale au travail.

Lieu(x)

Toulouse

Pré-requis nécéssaires

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Module d'Ouverture Sociétale

Présentation

Description

- Ouverture aux enjeux sociétaux (Transition énergétique, Transition écologique, Société numérique, Santé globale, Mobilités et infrastructures)
- Thématiques aux approches interdisciplinaires, mêlant Sciences & Techniques et Sciences Humaines et Sociales ou Thématiques en SHS complémentaires au socle proposé par l'INSA Toulouse.

évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Les Modules d'Ouverture Sociétale sont des enseignements ouverts aux 5 enjeux sociétaux adressés par l'INSA Toulouse, permettant d'appréhender des situations complexes et couvrant des thématiques non abordées dans les cursus INSA.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit,

Thermodynamique

Présentation

Description

Programme (contenu détaillé):

Introduction: Les outils mathématiques fondamentaux de la thermodynamique: Dérivés partielles, Jacobien, différentielle totale exacte et inexacte, transformation de Legendre, notion de grandeurs extensive et intensives, facteur intégrant.

- I Partie : Le formalisme de la thermodynamique des états d'équilibre :
- Postulats pour les systèmes simples,
- Variables d'états, équation d'état des systèmes simples.
- Coefficients calorimétriques des systèmes simples,
- Transformées de Legendre,
- Les potentiels thermodynamiques, énergies libres de transformation, et leurs applications
- Les conditions de stabilité des systèmes simples,
- Paramètre d'ordre, transition de phase d'ordre 1 et 2.
- II Partie: Applications
- les machines thermiques bilan et rendement
- Gaz parfaits, Mélanges de gaz parfaits,
- Gaz réels, Modèle de Van der Waals
- Transformation solide-liquide-vapeur d'un système simple
- Changements d'états,
- Diagramme de phase,
- III Partie : Phénomènes de transport de chaleur et de matière
- Phénomène de diffusion.
- applications : effets thermoélectriques (Peltier, Seebeck, ...)

- IV Partie : Modèle thermodynamique de l'effet de serre.
- Modélisation, et influence de la composition de l'atmosphère.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- Les lois de la thermodynamique, les notions de travail, chaleur, énergie associées à une transformation.
- l'application aux machines thermiques, aux cycles thermodynamiques, et le calcul de rendement.
- les changements d'état et les transitions de phase,
- les diagrammes de phase simple et de matériaux binaires.
- les concepts de diffusion et de transport de matière/chaleur.

L'étudiant devra intégrer des notions, les contextualiser puis être capable de les décontextualiser pour arriver à les projeter dans une situation adidactique.

Pré-requis nécéssaires

Bases d'analyse mathématique : fonction de plusieurs variables, dérivées, intégrations, équation différentielles.

Notions générales de thermodynamique des systèmes Physico-Chimiques

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Défauts ponctuels et diffusion

Présentation

Description

Programme (contenu détaillé):

Introduction : Rôle des mécanismes de diffusion et des défauts dans les matériaux.

- I Nature des défauts : défaut volumique, surfacique, linéique, ponctuel, dans les matériaux cristallins, les cristaux ioniques, les solides amorphes.
- II Aspects thermodynamiques des défauts ponctuels : enthalpie de formation, enthalpie de migration, défauts concentration de à l'équilibre thermodynamique.
- III Les bases de la diffusion : équation du flux, lois de Fick, aspects macroscopiques, aspects microscopiques, calcul du coefficient de diffusion, influence de la température
- IV Génération et annihilation de défauts : génération de défauts par exposition aux rayonnements et par diffusion (lacune, amorphisation, dopage), annihilation de défauts par traitement thermique.
- V Propriétés électroniques et optiques : centres colorés dans les cristaux ioniques, effet de dopage dans les matériaux semi-conducteurs.
- VI Techniques de mesures de la concentration de défauts : mesures électriques, géométriques, chaleur spécifique.

VII - Applications.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

- Les lois de la diffusion de matière dans les matériaux

solides.

- La nomenclature des défauts présents dans les matériaux solides, les mécanismes de création d'annihilation des défauts, les propriétés électroniques et optiques induites, et leurs applications.

L'étudiant devra intégrer des notions, les contextualiser puis être capable de les décontextualiser pour arriver à les projeter dans une situation adidactique.

Pré-requis nécéssaires

Bases d'analyse mathématique : fonction de plusieurs dérivées, variables. intégrations, équation différentielles.

Notions générales de thermodynamique des systèmes Physico-Chimiques

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Physique Quantique

Présentation

Description

Programme (contenu détaillé):

Bref rappel sur la fonction d'onde et introduction au formalisme de Dirac.

Les postulats fondamentaux de la mesure en mécanique quantique.

La dynamique des systèmes quantiques.

La théorie de l'oscillateur harmonique.

La théorie du moment cinétique.

Principales difficultés habituellement rencontrées par les étudiants :

Les difficultés sont essentiellement d'ordre mathématique (formalisme et notations nouvelles, résolution de l'équation aux valeurs propres d'une matrice...)

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Les postulats fondamentaux de la mesure en mécanique quantique.

L'évolution temporelle d'un système quantique.

La notion d'onde plane et de paquet d'ondes localisé.

La théorie de l'oscillateur harmonique et ses applications

La théorie du moment cinétique et ses applications.

L'étudiant devra être capable de :

Résoudre l'équation de Schrödinger (Énergie et états

propres) en formalisme matriciel.

Appliquer les postulats fondamentaux relatifs à la mesure d'une grandeur physique.

Calculer l'évolution temporelle d'un état quantique.

Manipuler les opérateurs « échelles» de l'oscillateur harmonique et du moment cinétique.

Pré-requis nécéssaires

-Nanophysique: Optique, Photonique, Nanotechnologies

- -Électrostatique
- -Mécanique du point

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Physique statistique

Présentation

Description

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

Les principes de bases de la physique statistique (origine de l'entropie).

La distribution microcanonique, la température, la fonction de partition et les fonctions U, S.

Les distributions canonique et grand canonique Les distributions de Fermi-Dirac et de Bose Einstein.

L'étudiant devra être capable de :

Calculer les propriétés d'équilibre d'un système fermé et ouvert simple.

utiliser les distributions de Fermi Dirac ou Bose Einstein en physique du solide.

Objectifs

Hypothèses fondamentales de la physique statistique. Etats macroscopiques, états microscopiques et densité d'états.

distribution Systèmes fermés équilibre, microcanonique. Température et distribution de Boltzmann. Fonction Z, U et S. Lien thermodynamique. Systèmes fermés en contact avec un thermostat. distribution canonique.

Systèmes en contact avec un réservoir de particule, distribution grand canonique. Potentiel chimique.

Fermions et Bosons. Distribution de Fermi Dirac et Bose Einstein. Exemples d'applications.

Pré-requis nécéssaires

- Classical mechanics
- Hamiltonian mechanics
- Thermodynamics
- Electrostatics
- Electromagnetism

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Cohésion

Présentation

Description

Cohésion des solides :

- Description des modèles d'énergie de cohésion de l'état solide - Potentiel de Lennard-Jones - Courbe de Condon-Morse
- Propriétés et grandeurs physiques liées à la cohésion : compressibilité, dilatation thermique, température de fusion, transformations allotropiques
- Applications aux cristaux ioniques et aux cristaux basés sur l'interaction de van der Waals

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) les modèles physiques de cohésion des matériaux solides à l'échelle atomique et moléculaire, ainsi que les liens entre ces modèles et des grandeurs physiques macroscopiques.

Pré-requis nécéssaires

Licence L2 de Physique ou Sciences des Matériaux

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Dislocations et déformations

Présentation

Description

Déformation plastique et rupture des matériaux cristallins :

- Fragilité, ductilité, plasticité des matériaux cristallins
- Dislocation : définition, théorie élastique des dislocations, interaction, mobilité et plasticité.
- Rupture fragile, clivage.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) les relations entre les défauts et dislocations au niveau de la structure atomique et les propriétés mécaniques macroscopiques des matériaux cristallins.

Il devra être capable de décrire du point de vue géométrique et énergétique les dislocations et leurs interactions, et les mettre en relations avec les propriétés mécaniques du matériau cristallin pour expliquer la fragilité et la ductilité des matériaux.

Pré-requis nécéssaires

Savoir utiliser la notation tensorielle (vue en parallèle dans le cours d'anisotropie)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Anisotropie

Présentation

Description

Chapitre 1: les tenseurs

- Définition de tenseur (utilisation, ordre, règles de transformation)
- Écriture des relations tensorielles: notation mathématique classique, convention d'Einstein, notation matricielle.
- Les tenseurs et les symétries (tenseurs symétriques, invariances et symétries du système)

Chapitre 2: les tenseurs et le propriétés mécaniques

- Définition des tenseurs de contrainte, déformation, élasticité et rigidité.
- Les différents types de contrainte/déformation (traction, cisaillement).
- Notation de Voigt/de l'ingénieur (notation à 6 composantes).
- Tenseur d'élasticité isotrope
- Constantes physiques de l'élasticité isotrope (modules de Young, Poisson, Coulomb et coefficients de Lamé).

Chapitre 3: les couplages statiques

- Piézoélectricité directe et inverse
- Le tenseur piézoélectrique.
- L'effet acousto-optique
- Les couplages entre propriétés statiques: concepts généraux et définition des effets (pyroélectricité, dilatation thermique ...).
- Théorie statistique des couplages et représentation matricielle (notation de Voigt).
- Les effets primaires et secondaires (ex. pyroélectricité primaire et secondaire)

Chapitre 4: optique anisotrope

- La représentation d'un tenseur d'ordre 2: l'ellipsoïde des indices et son interprétation géométrique.

- Les tenseur des permittivités et les indices optiques.
- La propagation optique selon l'un des axes principaux d'un système anisotrope et les retardateurs (lames quart d'onde et demi onde).
- La propagation optique dans une direction quelconque dans un système anisotrope: biréfringence et beam-splitters .

Objectifs

Étudier les principes de base concernant la théorie et le fonctionnement des tenseurs, et comment ils peuvent être utilisés pour décrire les caractéristiques anisotropes des cristaux. Dans le contexte des couplages (piézoélectricité, effet acousto-optique...) et de l'optique anisotrope (lames d'onde, biréfringence...), plusieurs exemples d'applications seront présentés.

Pré-requis nécéssaires

Algèbre linéaire, analyse mathématique des fonctions a plusieurs variables, mécanique du solide, optique ondulatoire.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Structure des solides

Présentation

Description

Structure des matériaux cristallins Partie 1. Cristallographie géométrique Partie 2. Symétries dans les cristaux Partie 3. Radiocristallographie

Partie 1. Description des solides cristallins:

- Le cristal parfait : définition et description de structures types ioniques et covalentes.
- Réseau ponctuel et motif : définitions
- plans et directions réticulaires, indices de Miller
- Réseau réciproque : définition et propriétés

Partie 2. Symétrie des cristaux

- Définitions des éléments de symétrie ponctuelle, notions de théorie des groupes;
- Projection stéréographique et représentations des groupes ponctuels ;
- Description des éléments de symétrie translatoire, unité asymétrique, groupes d'espace et représentations.

Partie3. Radiocristallographie

- Diffusion et absorption des rayons X,
- Diffraction des rayons X : conditions de diffraction(conditions de Laue, relation de Bragg, sphère d'Ewald); calcul des intensités diffractées (facteur de structure)
- Principales méthodes de caractérisation structurale des cristaux, des poudres et des couches minces
- Mise en œuvre et analyse de diffractogramme sur poudres et sur couches minces

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- la structure et la symétrie des solides cristallins
- la diffraction des rayons X par les solides cristallins

L'étudiant devra être capable de :

- caractériser la structure d'un cristal, classer les solides cristallins par leurs éléments de symétrie, orienter un cristal, mettre en œuvre des techniques de base de diffraction des rayons X et analyser les résultats d'une expérience de radiocristallographie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Physique appliquée des matériaux

Présentation

Description

Les expériences vues en TP sont : la métallographie quantitative, la calorimétrie, les essais de traction, les essais de dureté, la mise en évidence et la compréhension des défauts cristallins, les techniques de cristallisation et de recristallisation, et les études des propriétés anisotropes.

Les concepts abordés sont la microscopie optique, les diagrammes de phase, le traitement d'images, la calorimétrie, les transitions de phases, les propriétés mécaniques, le durcissement structural, les défauts et la croissance cristalline, la propagation des ondes dans les milieux anisotropes.

Objectifs

Cette UF constitue une approche expérimentale de la physique des matériaux. Les objectifs pédagogiques sont :

- acquérir les connaissances scientifiques relatives aux techniques adaptées à la science des matériaux.
- acquérir un savoir faire pratique sur ces techniques,
- acquérir une méthode de travail expérimentale en physique (comment choisir les paramètres expérimentaux, réaliser l'expérience, analyser les résultats)

L'étudiant devra être capable de :

- reproduire et appliquer certaines techniques d'élaboration et de caractérisation des matériaux parmi les techniques citées dans le programme.

Pré-requis nécéssaires

- Les cours de physique des matériaux qui se déroulent en parallèle au cours du semestre
- Les notions suivantes doivent être vues avant les TP : enthalpie, capacité calorifique et diagramme de phases.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet scientifique

Présentation

Description

A partir d'une thématique définie par un tuteur, généralement un enseignant du département de Génie Physique, les étudiants réalisent une recherche bibliographique pour développer une meilleure connaissance de la thématique proposée.

Ce projet se fait en appui des cours de physique et de matériaux qui se déroulent en parallèle du semestre. L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Le projet permet de mettre les étudiants en situation réelle, et de leur montrer des exemples concrets de la physique des matériaux.

Il permet de réaliser une recherche scientifique à partir de données bibliographique et de restituer cette recherche sous forme d'une présentation orale.

Pré-requis nécéssaires

Pas de prérequis spécifiques.

Les cours dispensés en parallèle du semestre suffisent.

Évaluation

Culture et compétences numériques 2

Présentation

Description

Le flot du Machine Learning
La préparation des données
Terminologie du Machine Learning
Types de données
Visualisation, qualité et taille des données
Fiabilité
Quelques fonctions d'activation
Performance du modèle
Impact environnemental

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, qui fait suite au module de 2A, l'étudiant.e aura consolidé sa connaissance du champ de l'IA: accuracy, fonction de perte, overfitting, taille de batch, techniques de visualisation, impact environnemental... Il aura aussi préparé et passé une certification PIX.

Pré-requis nécéssaires

Rudiments de Python

Business Game

Présentation

Description

Simulation de 5 années de vie de l'entreprise (prise de décisions en matière de production, de finance, de mercatique) grâce au jeu d'entreprise SIMGEST.

Objectifs

L'étudiant devra avoir compris et pourra expliquer l'interdépendance des fonctions de l'entreprise (production, commerciale, financière, ressources humaines) à travers la prise de décisions et l'analyse des résultats économiques et financiers de l'entreprise. Il devra comprendre le mode de fonctionnement d'une entreprise, construire des états financiers, calculer des coûts, créer des outils simples de gestion, optimiser des ressources pour rentabiliser l'entreprise, présenter à l'oral un compte rendu d'activités (en anglais)

Pré-requis nécéssaires

Cours de Gestion Financière de 3A

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Gestion financière

Présentation

Description

Compte de résultat, Trésorerie, Bilan. Eléments sur les coûts. Le seuil de rentabilité. Prise en compte des stocks dans les états financiers. Financement par emprunts. Rentabilité de l'entreprise.

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'étudiant devra avoir compris et pourra expliquer les documents financiers de synthèse de l'entreprise ainsi que les bases du calcul des coûts dans l'entreprise industrielle

Pré-requis nécéssaires

aucun

Évaluation

Business Communication

Présentation

Aucun

Description

Les étudiants créeront une start-up fictive dans un marché de leur choix, réaliseront une analyse de marché et identifieront des concurrents. Ils créeront une vidéo GoFUND Me et participeront à des réunions en anglais pour résoudre des défis commerciaux. La présentation finale sera un concours de type "Shark Tank", où les étudiants pitcheront leur projet devant un jury d'investisseurs.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Objectifs

Ce cours vise à développer les compétences essentielles en communication en entreprise. Les étudiants apprendront à comprendre un plan d'affaires simple et l'étude de marché, à animer des réunions et à utiliser le vocabulaire professionnel clé. Ils développeront des compétences pour décrire des graphiques et réaliser présentations percutantes. Les étudiants apprendront également à pitcher devant des investisseurs, à présenter une entreprise, et à aborder la responsabilité sociale et environnementale au travail.

Lieu(x)

Toulouse

Pré-requis nécéssaires

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Projet Professionnel Individualisé

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Module d'Ouverture Sociétale

Présentation

Description

- Ouverture aux enjeux sociétaux (Transition énergétique, Transition écologique, Société numérique, Santé globale, Mobilités et infrastructures)
- Thématiques aux approches interdisciplinaires, mêlant Sciences & Techniques et Sciences Humaines et Sociales ou Thématiques en SHS complémentaires au socle proposé par l'INSA Toulouse.

évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Les Modules d'Ouverture Sociétale sont des enseignements ouverts aux 5 enjeux sociétaux adressés par l'INSA Toulouse, permettant d'appréhender des situations complexes et couvrant des thématiques non abordées dans les cursus INSA.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit,

