

DOMAINE SOCLE SIEC_13 ECTS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Sûreté de fonctionnement

Présentation

Description

L'objectif de cet UF est d'introduire les grands principes de la sûreté de fonctionnement (SDF) : les concepts de base et les méthodes et techniques permettant de l'obtenir.

Un premier cours donne une introduction générale de la SDF en précisant la terminologie, attributs, moyens. Des cours spécifiques permettent d'aller un peu plus loin dans ce panorama en illustrant principalement les moyens de - Prévention à travers la modélisation - suivant les paradigmes synchrone et asynchrone temporisé, - Élimination des fautes à travers la vérification statique de programmes séquentiels et le diagnostic

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Les concepts de base de la sûreté de fonctionnement et les grandes méthodes et techniques d'obtention et de validation de la sûreté de fonctionnement d'un système.

L'étudiant devra être capable de :

- appliquer ces connaissances génériques aux systèmes technologiques électroniques et logiciels.
- d'expliquer les différentes approches et choisir le bon type d'approche pour une application particulière.

Pré-requis nécéssaires

Systèmes à événements discrets, Logique Propositionnelle

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Méthodes d'ingénierie

ECTS 4 crédits

Volume horaire

Présentation

Description

L'objectif de cette UF est d'introduire les grands principes de l'ingénierie des systèmes embarqués. Un premier cours introduit les concepts, méthodes et outils pour la définition et la maîtrise du processus de développement d'un système embarqué critique, avec un focus sur la conception d'architectures de systèmes complexes.

Un cours permet d'introduire la gestion agile des processus d'ingénierie dans un projet de développement de système embarqué.

Un MOOC support permet à l'étudiant de synthétiser l'ensemble des notions de l'UF et d'en approfondir certaines.

Un autre cours présente les principes du machine learning.

Un dernier cours, spécifique selon la spécialité des étudiants, permet d'approfondir la vérification de modèle ou le filtre de Kalman.

Les méthodes, pratiques et outils présentés sont mis en œuvre dans un projet transverse de développement d'un système embarqué critique.

Objectifs

Présenter les grands principes de l'ingénierie système et de l'ingénierie logicielle. : concepts, méthodes et outils pour la définition et la maîtrise du processus de développement d'un système embarqué critique

L'étudiant devra être capable de :

- appliquer ces connaissances génériques aux systèmes informatiques embarqués d'expliquer les différentes approches et choisir le bon type d'approche pour une application particulière.

Pré-requis nécéssaires

5 parties comprenant cours, cours en ligne, TD/TP et projet

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Architecture informatique pour l'embarqué

Présentation

Description

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer :

- Les principes et spécificités des réseaux utilisés dans les systèmes embarqués des secteurs de l'automobile, l'avionique et des objets connectés,
- les spécificités des systèmes d'exploitation et leurs principaux services (ordonnancement, mémoire, privilèges, etc.) pour les systèmes embarqués,
- les avantages et inconvénients des différentes architectures informatiques utilisées pour les systèmes embarqués,
- les éléments impactant les performances (calcul, consommation d'énergie, etc.) d'une architecture informatique et les méthodes pour les optimiser.

L'étudiant devra être capable de :

- choisir une technologie réseau répondant aux besoins d'un système embarqué,
- mettre en place le réseau support diun système embarqué,
- déployer un système diexploitation sur une architecture embarquée,
- développer un driver au sein dien système diexploitation,
- comparer deux architectures informatiques embarquées en terme de performances,
- choisir une architecture informatique adaptée aux besoins d'une application

Pré-requis nécéssaires

Programmation C, architecture des ordinateurs, réseau, système d'exploitation

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

