

DOMAINE METTRE EN OEUVRE LA GESTION DE L'ENERGIE_14 ECTS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Biomasse

Présentation

Description

Cet enseignement associe des conférences et des projets afin de comprendre et acquérir des connaissances avec une vision objective et critique sur

- les fondamentaux des biocarburants 1G,2G,3G, les procédés de production, la maturité technologique et les ressources disponibles
- le marché mondial des biocarburants (volumes de production et de consommation en France, en Europe et dans le monde) et l'identification des acteurs industriels producteurs et les couts de production
- les impacts des biocarburants par rapport aux carburants fossiles selon les analyses de cycle de vie
- les COP et la réglementation en Europe et en France
- Les biocarburants en Amérique dont Brésil, USA et en Asie

Pré-requis nécéssaires

Cet enseignement est ouvert à des étudiants de différentes formations de spécialités.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de cet d'enseignement, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- le contexte du développement des biocarburants a partir de biomasses
- les voies de production des biocarburants
- les avantages et limites des biocarburants en portant une analyse systémique et interdisciplinaire
- les acteurs industriels et institutionnels, nationaux et internationaux

Gestion de l'énergie électrique

Présentation

Description

Récupération de l'énergie ambiante

Une introduction générale portera sur des définitions et des concepts en lien avec les objets connectés et leurs besoins, mais également sur la problématique de leur alimentation.

Les solutions de stockage d'énergie embarquées permettant l'alimentation électrique des objets connectés seront présentées et discutées.

Les technologies de récupération d'énergie ambiante et de transfert de puissance sans fil pour les objets connectés seront présentées, notamment avec un état de l'art des objets connectés autonomes en énergie.

Un focus sur le transfert de puissance sans fil par ondes électromagnétiques rayonnées sera proposé. Une démonstration illustrera ce cas d'usage.

Enfin, la conception d'un objet connecté autonome en énergie sera abordée, en tenant compte des spécialités des étudiants.

Objectifs

Récupération de l'énergie ambiante

A la fin de cet enseignement, l'étudiant devra :

- connaitre les différentes façons d'alimenter électriquement un objet connecté
- connaître les principaux éléments de stockage de l'énergie utilisable dans un objet connecté
- connaitre les technologies de récupération de l'énergie ambiante et de transfert de puissance sans fil
- connaître quelques méthodes de gestion de l'énergie et d'optimisation de l'efficacité énergétique dans un

objet connecté

- être capable de proposer des solutions pour rendre autonome en énergie un objet connecté selon les besoins applicatifs

Pré-requis nécéssaires

Récupération de l'énergie ambiante Des connaissance en électromagnétisme et en physique sont nécessaires.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Actionneurs et générateur électriques

Présentation

Description

Le principe de la conversion de la puissance électromagnétique en puissance mécanique et le conversion inverse dans le cas de générateurs électriques est abordé simplement avec des définitions qui relient des grandeurs électriques aux grandeurs mécaniques.

Les différentes technologies sont ensuite abordées en insistant sur les avantages et les inconvénients de les utiliser en incluant leurs limitations: Moteurs à courant continu, Moteur universel, moteur synchrone, moteur asynchrone, moteur "brushless", moteurs pas-à-pas, les servomoteurs... L'exploitation de la réluctance variable est également abordée lors de l'introduction du moteur pas-à-pas.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

Cet enseignement aborde les différentes familles d'actionneurs (moteurs et générateurs électriques) en insistant sur leurs caractéristiques principales et les domaines de leur utilisation.

L'objectif principal est de savoir répondre à un besoin particulier en actionnement mécanique en faisant le choix le plus pertinent de technologie d'actionneurs.

Pré-requis nécéssaires

électromagnétisme de base

Méthanisation

Présentation

Description

Pré-requis nécéssaires

électromagnétisme de base

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Convertisseurs de puissance

Présentation

Description

Pré-requis nécéssaires

électromagnétisme de base

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Méthanisation II

Présentation

Visite Unité de méthanisation

Description

Contexte de la méthanisation en France – état des lieux – Objectifs de production – Gains environnementaux et agricoles

Les différents modèles de méthanisation, filières, intrants- potentiels méthanogènes - ressources et contraintes associées - préparation des intrants- grand mécanismes - principes - les bases de dimensionnement- Vision SOLAGRO de la méthanisation

La transformation biologique – Biodégradabilité, Cinétiques réactionnelles (limitations/inhibitions), Rendement, Productivité, Stabilité des digesteurs

La transformation biologique au travers de cas d'études via la simulation dynamique : Conduite -Dynamique - Contrôle (H2S, pH, stabilité...)

La valorisation du biogaz - traitement (H2S, siloxane, CO2, NH3)

- présentation des différentes techniques de traitement du biogaz (membranes, lavage à l'eau, adsorption (PSA) et voix de valorisation (réinjection, cogénération, BioGNV)
- Eléments de dimensionnement de modules membranaires, de colonne de lavage, de PSA

Les systèmes d'analyses en vigueur et leurs principes. La régulation

Gestion et valorisation des digestats - potentiel fertilisant- filières de traitement

Gestion et valorisation des digestats - L'économie de la filière et son évaluation environnementale

Éléments de thermique d'une unité de méthanisation

Objectifs

L'objectif de la semaine de formation filière biogaz est de donner des éléments de contexte et techniques qui permettent de saisir les enjeux de la filière et d'acquérir les concepts de base des procédés mis en jeu dans le déploiement de la filière biogaz.

Pré-requis nécéssaires

électromagnétisme de base

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Photovoltaique

Présentation

Description

Détails de la physique du fonctionnement des dispistifs PV La futur du PV Partie modélisation numérique de cellules PV Travaux pratiques sur cellules PV Comparaison LED/PV

Objectifs

La partie optionnelle PV décrira plus finement la physique des dispositifs photovoltaïques à l'échelle de la cellule. Nous verrons que le fonctionnement est très similaire (réciproque) à celui d'une LED via un couplage lumière-semiconducteur. Nous verrons qu'un tel dispositif ne se résume pas à une jonction p-n mais peut se généraliser à tous dispositifs optoélectroniques. Nous aborderons ensuite les pistes en R&D pour augmenter les rendements. Un TP de mesure de conversion électrique est prévu ainsi qu'un TP de modalisation numérique de cellules PV.

Pré-requis nécéssaires

Notion de physique générale : électricité, optique... Un plus une connaissance sommaire d'un semi-conducteur bien que les notions clés seront rappelées

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

