

Sécurité système et matérielle, rétro conception

Présentation

Description

.Études des noyaux Linux et Windows du point de vue de la sécurité :

- Mécanismes noyau de protection de l'espace utilisateur
- Attaques sur le noyau depuis l'espace utilisateur (via abus de privilèges, ...)
- Protection du noyau face à des attaques depuis l'espace utilisateur
- Ouverture sur la protection du noyau face aux attaques de composants matériels
- . Composants matériels des systèmes d'information pour la sécurité :
- Panorama des composants matériels présents dans un système informatique
- Utilisation de ces composants pour améliorer la sécurité (virtualisation, TPM, IO-MMU)
- Création d'une chaîne de confiance au démarrage basée sur l'utilisation de matériels de confiance
- Présentation de projets de recherche utilisant le matériel comme support pour la sécurité
- Mise en pratique de ces concepts par le développement d'une solution de sécurité sur architecture Intel
- . Attaques et sécurisations matérielles :
- Rappels fondamentaux de microélectronique et d'architecture matérielle
 - Canaux auxiliaires (SPA, DPA, ...)
 - Contre mesures matérielles et algorithmiques
- Démonstration d'une attaque Bellcore sur un processeur grand public

- . Chaîne de compilation
- Introduction aux techniques de compilation
- Analyse de graphes de contrôles et de données
- . Techniques de rétro conception logicielle
- Introduction à la rétro-ingénierie: méthodologie et outils
- Découverte et prise en main des outils: désassembleurs, débuggers et de leurs langages de scripting
- Application à l'analyse de code malveillant et/ou à l'exploitation de vulnérabilité
 - Initiation à l'outil IDA

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- Les principaux mécanismes de protection qui existent aujourd'hui dans les noyaux de systèmes d'exploitation .
- Les principales attaques réalisées depuis le matériel ainsi que les contre-mesures associées ;
- Le fonctionnement des principaux composants matériels pour la sécurité tels que les hyperviseur et les IOMMU;
- L'intérêt des dernières avancées en terme de protection matérielle réalisées par les fondeurs de processeurs et de chipset ;
- Le fonctionnement des attaques matériels et physiques principales qui ciblent les systèmes informatiques;
- La rétro-conception de logiciels (reverse engineering) tout en étant capable d'expliquer la la chaîne de compilation avec les modèles utilisés par les compilateurs pour générer le code machine ;

- Les stratégies pour rendre la rétro-conception de logiciels plus difficile à réaliser.

L'étudiant devra être capable de :

- Identifier les composants logiciels les plus adaptés pour protéger un système d'exploitation vis-à-vis des attaques logicielles ;
- Identifier les menaces provenant des couches basses et les vecteurs d'attaques à considérer dans un système :
- D'obtenir une vue globale des échanges entre le composants matériels d'un système pour identifier les composants critiques et déterminer les contre-mesures a intégrer dans le système d'exploitation;
- Identifier les menaces sur les composants physiques d'un système ;
- De réaliser une rétro-conception de maliciels pour en comprendre le fonctionnement voire créer des signatures pour les détecter

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

De bonnes compétences en programmation en langage C et assembleur :

- Un minimum de connaissances sur le fonctionnement des OS ;
- Des bases en algèbre et sur l'autilisation de la théorie des automates.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

