

DOMAINE INGENIERIE SYSTEME, AUTOMATIQUE et CHAINES D'INFORMATION 2_12 ECTS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Processus pour l'ingénierie des systèmes

Présentation

Description

- 1- Ouverture aux réseaux industriels Introduction générale sur les réseaux industriels et les protocoles couramment utilisés.
- 2- Informatique et électronique embarquées
- Analyse de capteur (ex. sonde de température),
- Réalisation de montage intégrant un amplificateur opérationnel,
- Prise en main du microcontrôleur de la famille des STM32.
- Prise en main de différents modules de transmission RF
- Mise en place de toute un architecture matérielle et logicielle pour réaliser une communication sans fils de la température.
- 3- Formation à la recherche documentaire Une formation sera dispensée sur les canaux de diffusion scientifiques (bases documentaires, journaux), les méthodologies de recherche et outils associés. Une sensibilisation aux droits d'auteurs et à l'analyse de la qualité des informations sera également donnée.

architecture, processus transverses) du cycle de vie du système ainsi que la gestion de projet agile.

Un projet intégrateur (TP) permet de traiter le développement d'un système complexe de bout en bout, en adoptant une approche basée sur des modèles (MBSE), en utilisant la méthode Arcadia et l'outil Capella.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'UE traite (CM, TD) chaque processus technique d'ingénierie système (besoins, exigences, analyse,

Instrumentation

Présentation

Notions d'algorithmique Base d'Électrocinétique

Description

Étude des différents éléments constituant une chaine d'acquisition (du capteur à l'ordinateur)

- capteurs
- conditionnement du signal
- carte d'acquisition
- réalisation d'un programme d'acquisition et d'une interface utilisateur

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer les principes de base de l'acquisition de données à l'aide d'un ordinateur

L'étudiant devra être capable de :

- Dimensionner les différents éléments d'une chaîne d'acquisition simple
- Mettre en œuvre un langage de programmation graphique dédié à l'acquisition et le traitement des données (LabVIEW).

Pré-requis nécéssaires

Programmation orientée objet temps réel

Présentation

Description

Partie temps réel:

Le module aborde les mécanismes des noyaux temps réel et la conception d'applications sur ces exécutifs.

L'étudiant devra être capable de :

- Mettre en place une méthodologie de conception afin de répondre à une spécification avec des contraintes de temps
- Concevoir des architectures logicielles d'application temps réel
- Dimensionner correctement les différents paramètres des tâches et des moyens de synchronisation et de communication
- Programmer le système en utilisant les services d¿un système d¿exploitation temps réel et un langage orienté objet
- Mettre au point, simuler et analyser les performances des applications

Partie programmation orientée objet:

A la fin du cours, les étudiants seront capables d'expliquer ce qu'est (dans le paradigme orienté objet).

- Une classe (attributs, méthodes, encapsulation)
- Un objet,
- Une relation entre classes (association, composition, agrégation, héritage),
- La propriété de polymorphisme et comment l'obtenir (overloading, overriding).

Objectifs

Ce module est constitué de deux composants :

- La partie sur les systèmes temps réel présente les systèmes temps réels, les concepts clefs, les applications, contraintes, et enseigne la programmation de ces systèmes en utilisant les services des systèmes d'exploitation temps réels.
- A la fin de la partie sur la programmation objet, les étudiants seront capables de produire un code C++ à partir d'un diagramme de classe UML avec relations, héritage et polymorphisme.

Pré-requis nécéssaires

Algorithmique, programmation C (débutant)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

