

#### 5e ANNEE PTP INNOVATIVE SMART SYSTEM\_ SEMESTRE 9

## Présentation

#### Description

### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

## Infos pratiques

### Lieu(x)





#### Smart Devices



ECTS 5 crédits



Volume horaire

#### Présentation

#### Description

CAPTEURS INTELLIGENTS ET CHAINE D¿ACQUISITION:

- 1. PRINCIPES FONDAMENTAUX : définitions et caractéristiques générales, Chaîne de mesure , Définition d'un capteur, Type de capteur, Transformation de la grandeur physique, Grandeurs d'influence, Capteurs intégrés, Capteurs intelligents (« smart devices »)
- 2. CARACTÉRISTIQUES MÉTROLOGIQUES : étalonnage du capteur, limites d¿utilisation du capteur, sensibilité, linéarité, fidélité justesse ¿ précision, rapidité, discrétion ou finesse¿
- 3. PRINCIPES DE DÉTECTION UTILISES DANS LES CAPTEURS : capteurs analogiques, capteurs digitaux¿
- 4 CARACTÉRISTIQUES GENERALES DES CONDITIONNEURS DE CAPTEURS: principaux types de conditionneurs pour capteurs passifs, Qualité d'aun conditionneur, Montage potentiométrique, Les ponts,
- 5. CONDITIONNEURS DU SIGNAL : Adaptation de la source du signal à la chaîne de mesure, Linéarisation, Amplification du signal et réduction de la tension de mode commun
- 6. SYSTÈMES AUTOMATISES
- 7. APPLICATIONS: capteurs optiques, capteurs de gaz

MICROCONTROLEURS ET OPEN SOURCE HARDWARE:
I ¿ LES MICROCONTROLEURS ET LEURS
ARCHITECTURES

II à LA PLATEFORME OPEN-SOURCE ARDUINO®: Quiest-ce qui un Arduino ?, La plateforme de développement IDE, Quels sont les composants adressables: actionneurs et capteurs

III ¿ MISE EN ŒUVRE DES ARDUINO: les entrées/sorties digitales, les entrées/sorties analogiques, applications digital & analogique, faire de l¿analogique avec du digital, déparasitage ou debouncing, les interruptions (matérielles et logicielles), liaisons séries: asynchrone (RS232) & synchrone (I2C, SPI, one wire), créer une librairie, les shields & leur création

- IV ¿ COMMUNICATION DE L¿ARDUINO AVEC D¿AUTRES PLATEFORMES: processing => java, android, python, flash, mxp, puredata et l¿internet des objets iot
- V ¿ Propriété intellectuelle dans l¿open source hardware
- 10. RÉALISATION D¿UN CIRCUIT ÉLECTRONIQUE Création de circuits électroniques avec KiCAD (schématique, routage, tirage de PCB).

#### 11.STAGE NANO-CAPTEURS:

Réalisation de nano-capteurs de gaz en salle blanche. Caractérisation des nano-capteurs.

#### **Objectifs**

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

CAPTEURS INTELLIGENTS ET CHAINE D'ACOUISITION:





- Les éléments permettant la conception et l'utilisation d'un « smart device » et d'une chaîne de mesure.

Il sera capable de manipuler :

- les principes physiques de fonctionnement des capteurs.
- les notions utilisées en métrologie
- les procédures de mises en œuvre,
- les montages électriques dits « conditionneurs »
- la conception d'eune chaîne de mesure et d'un « smart device ».

### MICROCONTROLEURS ET OPEN SOURCE HARDWARE .

Maîtriser les éléments nécessaires des microcontrôleurs pour concevoir et réaliser des applications concrètes en Open Source Hardware,

## CONCEPTION DUN CIRCUIT EN ELECTRONIQUE ANALOGIQUE :

Il sera capable de concevoir et simuler un étage d'amplification dédié à la mesure du capteur réalisé

## CONCEPTION D'UNE CARTE ELECTRONIQUE DU CAPTEUR:

Il sera capable de concevoir et réaliser une carte électronique contenant le capteur, son électronique de conditionnement et les éléments de communications nécessaire pour envoyer les données sur un réseau bas débit de type LoRa.

#### NANO-CAPTEURS:

- la démarche qui consiste à réaliser des dispositifs de nano- et micro-électronique par des méthodes à bas coût intégrant des nano-objets préparés en solution;
- le fonctionnement d'un nano-capteur.

L'étudiant devra avoir compris et pourra expliquer :

- les concepts et les pratiques expérimentales visant à synthèse de nano-objets en phase liquide ; la stabilisation de solutions colloïdales ;
- les concepts et les pratiques expérimentales de dépôts de ces nano-objets sous forme de réseaux 2D et 3D ;
- les principes physiques des capteurs à base de nanoparticules (capteurs de gaz, de contrainte...)

L'étudiant devra être capable de :

- produire expérimentalement un capteur à base de nanoparticules qu'il aura synthétisé et assemblé entre deux électrodes ;
- mesurer les propriétés du capteur et décrire son fonctionnement ;
- discuter les résultats expérimentaux et proposer des améliorations.

#### Pré-requis nécéssaires

Physique et électronique générale. Programmation C et C++

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)





### Security for IoT

### Présentation

#### Description

Le contenu de cet enseignement est organisé autour des thématiques suivantes :

- Cryptographie appliquée à l'IoT
- Sécurité matérielle
- Sécurité logicielle
- Sécurité des protocoles
- Analyse statique et dynamique

#### **Objectifs**

Cet enseignement a pour objectif de fournir aux étudiants une compréhension approfondie des enjeux de la sécurité dans le domaine de l'Internet des Objets (IoT). À la fin de cette formation, les participants seront capables de :

- Identifier les menaces et vulnérabilités propres aux systèmes IoT.
- Mettre en œuvre des techniques de cryptographie adaptées aux contraintes des dispositifs IoT.
- Comprendre et analyser les aspects de sécurité matérielle, logicielle et des protocoles.
- Détecter et corriger les failles dans les logiciels et infrastructures loT.
- Effectuer des audits de sécurité en utilisant des outils d'analyse statique et dynamique.

#### Pré-requis nécéssaires

- Bases en programmation (C, Python).
- Connaissances fondamentales en systèmes embarqués.
- Notions générales de réseaux et protocoles de communication.
- Introduction à la sécurité.

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)





#### Wireless Sensors Network

#### Présentation

#### Description

Les architectures et les protocoles des réseaux de capteurs seront présentés problématiques, dimensionnement, déploiement et paradigmes de communication. Les enjeux autour de l'énergie consommée et de la sécurité seront abordés. La problématique de la localisation et de synchronisation seront également traités. conception et les spécificités de couches physiques et couches MAC de réseaux de capteurs sans fil et des objets communicants seront discutés.

Les concepts présentés lors de cet enseignement s'appuient sur l'expérience acquise lors de plusieurs projets européens (MIMOSA, QSTREAM, Guardian Angels for a Better Life, SMARTER, etc) et nationaux (Nano-Innov NanoComm, McBIM, WISPERS).

#### **Objectifs**

A la fin de ce cours, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- les architectures et protocoles de communication des réseaux des capteurs vers l'Internet d'objets (IoT)
- les spécificités des couches physiques et couches MAC de réseaux de capteurs sans fil et des objets communicants

L'étudiant devra être capable de :

- concevoir, dimensionner et déployer un réseau des capteurs en fonction de contraintes de l'application
- concevoir et dimensionner les couches physiques et MAC d'un réseau de capteurs sans fil/ objets communicant

#### Pré-requis nécéssaires

Cours de télécommunication

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)





#### Embedded IA for IoT

#### Présentation

#### Description

Le cours de déroule en trois parties :

- Compléments d'apprentissage supervisé avec spécificités de l'edge AI et de l'IoT - 1 cours
- Pré-traitement des données et réduction de dimensions 1 cours
- Méthodes d'apprentissage pour les séries temporelles et pour les images (réseaux de neurones convolutionnels) - 2 cours
- Méthodes d'optimisation pour permettre d'embarquer des modèles d'apprentissage - 1 cours
- 3 séances de TP permettent de mettre en œuvre des méthodes d'apprentissage sur basées sur des données loT (séries temporelles et images) en prenant en compte des contraintes de ressources limitées liées aux devices loT ciblés (calcul et mémoire) pour des tâches de classification ou de régression. Les TP se déroulent en Python avec les librairies scikit-learn, TensorFlow et TensorFlow Lite.

d'embarquer des outils d'apprentissage automatique sur des appareils loT contraints en ressource

L'étudiant devra être capable de :

- dimensionner un outil d'IA pour une application embarquée ou en périphérie en prenant en compte les contraintes de communication, de temps de réponse, de confiance dans les résultats du modèle, et de confidentialité.
- mettre en place un processus d'apprentissage sur des données IoT hétérogènes (données tabulaires, images, séries temporelles)
- utiliser les algorithmes implémentés dans des librairies existantes
- mettre en place des méthodes de compression de modèle pour l'embarqué à partir de librairies existantes
- présenter et expliquer les résultats d'algorithmes d'apprentissage
- développer en langage Python

#### Pré-requis nécéssaires

Algorithmique, Bases d'apprentissage automatique, Langage Python

#### **Objectifs**

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

- les spécificités de l'intelligence artificielle en périphérie (edge AI)
- les principales méthodes d'optimisation permettant

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...





# Infos pratiques

## Lieu(x)





### Energy for connected objects



**ECTS** 



Volume horaire

37h

#### Présentation

#### Description

Une introduction générale portera sur des définitions et des concepts en lien avec les objets connectés et leurs besoins, mais également sur la problématique de leur alimentation.

Les solutions de stockage d'énergie embarquées permettant l'alimentation électrique des objets connectés seront présentées et discutées.

Les technologies de récupération d'énergie ambiante et de transfert de puissance sans fil pour les objets connectés seront présentées, notamment avec un état de l'art des objets connectés autonomes en énergie.

Un focus sur le transfert de puissance sans fil par ondes électromagnétiques rayonnées sera proposé. Les TP illustreront ce cas d'usage.

Enfin, la conception d'un objet connecté autonome en énergie sera abordée, notamment avec les problématiques de récupération et de gestion de l'énergie, mais également d'optimisation matérielle et logicielle de la consommation. fonction de sa spécialité, à des niveaux différents-:

- connaitre les différentes façons d'alimenter électriquement un objet connecté
- connaître les principaux éléments de stockage de l'énergie utilisable dans un objet connecté
- connaitre les technologies de récupération de l'énergie ambiante et de transfert de puissance sans fil
- connaître les méthodes de gestion de l'énergie dans un objet connecté
- connaître les méthodes d'optimisation de l'efficacité énergétique d'un objet connecté
- être capable de mettre en oeuvre les bonnes pratiques pour la conception d'un objet connecté économe en énergie, à la fois au niveau matériel et au niveau logiciel
- être capable de proposer des solutions pour rendre autonome en énergie un objet connecté selon les besoins applicatifs (dont la durée de vie)
- être capable de concevoir et implémenter un objet connecté sans batterie
- être capable de caractériser l'efficacité énergétique d'un récupérateur d'énergie

#### Pré-requis nécéssaires

Des connaissance en électronique, en programmation pour l'embarqué, en électromagnétisme, et en physique sont nécessaires.

#### **Objectifs**

A la fin de cet enseignement, l'étudiant devra -en





### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

### Lieu(x)







#### Innovative Project 1

#### Présentation

abordées durant ce semestre. Le projet couvrira la spécification, la conception, la réalisation et la présentation devant un jury académique et industriel.

#### Description

Les cours d'anglais sont organisés sous la forme d'ateliers pendant lesquels les étudiants travaillent sur les livrables écrits et oraux liés à leur projet. L'accent est mis sur leur travail autonome et sur les retours constructifs que leur fournissent les enseignants : ainsi, des retours réguliers, individuels et détaillés visent à permettre aux étudiants de produire des documents et d'effectuer des présentations qui répondent aux exigences professionnelles de leur domaine.

L'aspect technique du projet est guidé par des enseignants en fonction des matières mise en avant dans chaque projet avec des approfondissements quand cela est nécessaire.

#### **Objectifs**

A l'écrit comme à l'oral, structurer son propos, s'exprimer dans une langue correcte et dans style concis et précis tout en respectant les conventions de genre ; maîtriser le vocabulaire spécialisé ; utiliser un registre adapté et citer ses sources en étant conforme aux standards internationaux.

Concernant le projet innovant, l'étudiant sera capable de mener à bien un projet innovant d'envergure mettant en œuvre un ensemble de thématiques

### Pré-requis nécéssaires

(Anglais) Maîtrise de l'anglais général et des compétences liées à la présentation écrite et orale rigoureuse d'éléments scientifiques (cours d'anglais de 1e, 2e, 3e et 4e année)

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)





#### Portfolio 1

#### Présentation

#### Description

Le but du portfolio est de constituer un répertoire de travaux commentés par l'étudiant qui permettra à l'équipe d'enseignants d'évaluer l'atteinte des objectifs pédagogiques et le développement des compétences de l'étudiant, dans une perspective formative.

Le portfolio ne se réduit pas à un recueil de produits (les productions par l'étudiant, des travaux fournissant la preuve d'apprentissage) mais il rend compte également du processus d'apprentissage (comment l'étudiant en est venu à produire ces travaux) et du progrès dans l'apprentissage (soit le développement de l'étudiant lors de la production des travaux).

Le portfolio permet d'évaluer à la fois les productions, le processus et le progrès.

#### Pré-requis nécéssaires

Aucun

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

Lieu(x)

Q

Toulouse

#### **Objectifs**

En prenant en charge la constitution de son portfolio et l'auto-évaluation de ses apprentissages, l'étudiant est amené à :

- Réfléchir sur ses propres processus et méthodes d'apprentissage
- Mettre en évidence et valoriser toutes ses expériences d'apprentissage, explicites ou implicites
- Devenir autonome et responsable vis-à-vis de son propre processus d'apprentissage





#### Wireless Communications

#### Présentation

#### Description

Cette unité d'enseignement est constituée de deux cours :

- IPv6 pour les objets connectés
- Réseaux émergents

Le parcours pédagogique du cours "IPv6 pour les objets connectés " est le suivant :

Chapitre 1 : un survol des technologies réseau pour les objets connectés

Chapitre 2 : Architectures réseau basées IPv6 pour les objets connectés

TD1 sur machine: Introduction à IPv6

TD2 sur machine : IPv6, 6LowPAN et RPL pour les objets connectés

Le parcours pédagogique du cours "réseaux émergents" est le suivant :

- Chapitre 1 : un survol des paradigmes réseau émergents
- Chapitre 2 : Software Defined Network (SDN)
- TP1 : Introduction aux réseaux SDN/OpenFlow
- TP2 : Développement d'une application de contrôle réseau SDN/OpenFlow

Au terme de cette UE, les étudiants seront en mesure de :

- identifier les limites de certains des choix qui ont guidé la conception de l'Internet historique pour supporter les nouveaux usages des réseaux et notamment ceux qu'impliquent la mise en réseau d'objets connectés de toute sorte.
- d'évaluer les bénéfices et principales limites que pose l'adoption d'une architecture réseau basée IPv6 pour les objets connectés
- mettre en place et opérer un réseau d'objets connectés basé IPv6
- prendre connaissance des principaux paradigmes réseau qui ont émergé ces dernières années, dont : la virtualisation et "softwarisation" réseau, la virtualisation des fonctions réseau (NFV pour Network Function Virtualisation), le Software Defined Networking (SDN), etc.
- acquérirr des premières compétences en configuration d'équipements SDN ainsi qu'en développement d'application de contrôle réseau sur une infrastructure SDN

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

### Lieu(x)



#### **Objectifs**





## 5G Technologies

#### Présentation

Bases de traitement du signal et de télécommunication

#### Description

Partie cours: Technology scale down, Stories about mobiles, Introducing UHF, Roadmap to 6G Partie exposés: 5G: developing countries, 5G modulations, 5G infrastructure, mobile Health & 5G, Iridium Next, OneWeb, Starlink, Kuiper, NB-IoT, LoRa & Sigfox, LTE-M for IoT, Drone-trains, 5G: Vehicule to Vehicule, 5G: Vehicule to EveryThing, Cancer & EM waves, Mm waves threats, Mobile addictions, Vision of ITU, 6G modulations, 6G antennas, Anti-5G/6G, Technologies for 6G, Nokia & 6G, Ericsson & 6G, Apple & 6G, Samsung & 6G, Orange and 6G, Environmental issues 5-6G

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)

Toulouse

### **Objectifs**

Présenter le contexte général des communications mobiles et l'évolution depuis la 2G à la 6G.

Proposer aux étudiants de préparer une restitution d'un sujet en lien avec la 5-6G sur un format d'une présentation orale de 15mn. Les sujets

#### Pré-requis nécéssaires





#### Middleware and Services

#### Présentation

#### Description

Programme (contenu détaillé) : Architecture de service

- Technologies middleware de communication o RPC/CORBA
- o Message Oriented Middleware (MOM)
- Architectures Orientées Services:
- o Services Web (SOAP, REST)
- o Conception et exécution de processus métiers BPEL
- o Bus de services (ESB) et création d'applications composites

Intergiciel pour l'internet des objets

L'internet des objets sera positionné en terme de concept, de domaine d'application et de potentiel. Un panorama des principaux standards sera fait que ce soit au niveau des réseaux de capteurs ou des domaines d'applications. Ceci permettra d'introduire les notions de service et d'architecture informatique et réseau nécessaires. Les différentes problématiques de l'internet des objets seront illustrées à travers les solutions proposées dans le cadre général du standard OneM2M et de son implémentation dans le logiciel opensource eclipse OM2M diffusé par la fondation eclipse. On traitera notamment les problèmes d'adressage et de point d'accès, de format d'échange, de manipulation des capteurs et des actionneurs, de sécurité et de contrôle d'accès et plus généralement de l'interopérabilité que ce soit au niveau des technologies ou des données manipulées.

Adaptabilité : cloud et gestion autonomique

Le concept de cloud sera présenté. Un focus particulier sera fait sur le concept d'Infrastructure As A Service. Le logiciel OPENSTACK sera utilisé pour déployer une architecture loT sur un cloud. Le concept d'autonomique computing sera explicité et utilisé ensuite pour adapter dynamiquement l'architecture loT déployée.

#### Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Cette formation est composée de 3 parties, les concepts suivants seront abordés :

- Les architectures orientées service
- Les middleware
- Les Intergiciels pour l'internet des objets à travers les standards et le déploiement d'une architecture de réseaux de capteurs.
- Le concept de Cloud et plus particulièrement l'Infrastructure As A Service.
- La gestion dynamique à travers les principes de l'autonomique computing

L'étudiant devra être capable de :

- Concevoir et développer une architecture SOA
- Développer des services Web SOAP et REST
- Développer une composition de services (orchestration) BPEL
- Savoir positionner les standards principaux de l'Elnternet des Objets
- Déployer une architecture conforme à un standard et mettre en place un système du réseau de capteurs aux services
- Comprendre la notion de cloud





- Utiliser une infrastructure de cloud dans un mode Infrastructure As A Service
- Déployer et adapter de manière autonomique une plate-forme pour l'Elnternet des Objets sur le cloud

### Pré-requis nécéssaires

Programmation Java, conception Orientée objet, notion en réseau, XML et XML schéma

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

### Lieu(x)





#### Innovative Project 2

#### Présentation

#### Description

Les cours d'anglais sont organisés sous la forme d'ateliers pendant lesquels les étudiants travaillent sur les livrables écrits et oraux liés à leur projet. L'accent est mis sur leur travail autonome et sur les retours constructifs que leur fournissent les enseignants : ainsi, des retours réguliers, individuels et détaillés visent à permettre aux étudiants de produire des documents et d'effectuer des présentations qui répondent aux exigences professionnelles de leur domaine.

L'aspect technique du projet est guidé par des enseignants en fonction des matières mise en avant dans chaque projet avec des approfondissements quand cela est nécessaire.

#### **Objectifs**

L'étudiant devra être capable de :

(enseignement d'anglais) A l'écrit comme à l'oral, structurer son propos, s'exprimer dans une langue correcte et dans style concis et précis tout en respectant les conventions de genre ; maîtriser le vocabulaire spécialisé ; utiliser un registre adapté et citer ses sources en étant conforme aux standards internationaux.

Concernant le projet innovant, l'étudiant sera capable

de mener à bien un projet innovant d'envergure mettant en œuvre un ensemble de thématiques abordées durant ce semestre. Le projet couvrira la spécification, la conception, la réalisation et la présentation devant un jury académique et industriel.

#### Pré-requis nécéssaires

(Anglais) Maîtrise de l'anglais général et des compétences liées à la présentation écrite et orale rigoureuse d'éléments scientifiques (cours d'anglais de 1e. 2e. 3e et 4e année)

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)





#### Portfolio 2

#### Présentation

#### Description

Le but du portfolio est de constituer un répertoire de travaux commentés par l'étudiant qui permettra à l'équipe d'enseignants d'évaluer l'atteinte des objectifs pédagogiques et le développement des compétences de l'étudiant, dans une perspective formative.

Le portfolio ne se réduit pas à un recueil de produits (les productions par l'étudiant, des travaux fournissant la preuve d'apprentissage) mais il rend compte également du processus d'apprentissage (comment l'étudiant en est venu à produire ces travaux) et du progrès dans l'apprentissage (soit le développement de l'étudiant lors de la production des travaux).

Le portfolio permet d'évaluer à la fois les productions, le processus et le progrès.

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)

Toulouse

#### **Objectifs**

En prenant en charge la constitution de son portfolio et l'auto-évaluation de ses apprentissages, l'étudiant est amené à :

- Réfléchir sur ses propres processus et méthodes d'apprentissage
- Mettre en évidence et valoriser toutes ses expériences d'apprentissage, explicites ou implicites
- Devenir autonome et responsable vis-à-vis de son propre processus d'apprentissage





## English

### Présentation

#### Description

Le travail en cours se concentre sur le livrables ainsi que la prononciation correcte des termes de base et scientifique dans le domaine de l'élève. On travaille également sur le travail en équipe et l'organisation de projet.

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)

Toulouse

#### **Objectifs**

Dans ce module, l'élève apprendra a : communiquer les informations scientifiques à l'oral et à l'écrit en respectant les codes de registre et de langue. Différencier entre l'anglais oral et écrit S'adresser correctement à un public spécialiste et nonspécialiste.

#### Pré-requis nécéssaires

Il est fortement recommandé d'avoir suivi le cours d'anglais scientifique en 4A





### Psychologie sociale et éthique

#### Présentation

réflexivité sur soi : la méta-cognition

#### Description

Le regard psychosocial : notions clefs de la psychologie sociale dont la dynamique de groupe, les processus de décision, la gestion de conflits, l'influence sociale, les stéréotypes, les conditions de soumission à l'autorité, les minorités actives, les risques psycho-sociaux (RPS) et qualité de vie au travail (QVT). En somme, ces notions seront travaillées avec des exemples concrets et avec des mises en situation professionnelle et interculturelle dans une démarche éthique de l'ingénierie du XXIème siècle et des enjeux socio-écologiques.

## Objectifs

Analyser des situations de groupe avec des concepts issus de la psychologie sociale

Comprendre les relations interpersonnelles en situation professionnelle et interculturelle

Approfondir la réflexion sur les enjeux socioécologiques dans son parcours professionnel

Identifier les dimensions éthiques de ces situations et savoir argumenter sa position

Aiguiser l'esprit critique, le décentrement et la

### Pré-requis nécéssaires

Aucun

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

# Infos pratiques

#### Lieu(x)

V





### Management d'équipe

### Présentation

#### Description

Tous les thèmes autour du Management d'équipe : recrutement, motivation au travail, rémunération globale, appréciation des salariés, modalités d'encadrement (leadership), gestion des conflits, relations professionnelles (dialogue social), flexibilité des Ressources Humaines et contrats de travail, formation, gestion des emplois et des compétences, gestion des carrières.

évaluation par les pairs...

# Infos pratiques

#### Lieu(x)

Toulouse

### **Objectifs**

L'étudiant devra être capable de :

- Repérer et comprendre des informations liées aux ressources humaines au sein d'une entreprise
- Analyser une situation de management d'équipe en référence à un cadre théorique
- Formuler et argumenter des solutions managériales

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit,





**APS** 

## Présentation

### Description

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

## Infos pratiques

### Lieu(x)







PPI

## Présentation

### Description

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

## Infos pratiques

### Lieu(x)



