

Nano-capteur

ECTS

Volume horaire

34h

Présentation

Description

Ce projet commence par un travail bibliographique relatif aux capteurs et un exposé oral de cette partie. Il est suivi d'une partie expérimentale donnant lieu à la rédaction d'un rapport d'expérience

La réalisation expérimentale d'un nano-capteur se déroule en trois parties :

- Synthèses chimiques de nanoparticules ; caractérisation par diffusion de la lumière, microscopie électronique, microscope à force atomique (AFM);
- Assemblage de nanoparticules par dépôt convectif, nano-xérographie et/ou diélectrophorèse ; Fonctionnalisation de surface par nanolithographie ;
- Mesures électriques des capteurs à base de réseaux de nanoparticules ; caractérisation de capteurs de gaz sous pression partielle de gaz ; étude en température ; mesure de sensibilité et sélectivité.

- la démarche qui consiste à réaliser des dispositifs de nano- et micro-électronique par des méthodes à bas coût intégrant des nano-objets préparés en solution;
- le fonctionnement d'un nano-capteur

L'étudiant devra avoir compris et pourra expliquer :

- les concepts et les pratiques expérimentales visant à synthèse de nano-objets en phase liquide ; la stabilisation de solutions colloïdales ;
- les concepts et les pratiques expérimentales de dépôts de ces nano-objets sous forme de réseaux 2D et 3D :
- les principes physiques des capteurs à base de nanoparticules (capteurs de gaz, de contrainte)

L'étudiant devra être capable de :

- produire expérimentalement un capteur à base de nanoparticules qu'il aura synthétisé et assemblé entre deux électrodes ;
- mesurer les propriétés du capteur et décrire son fonctionnement :
- discuter les résultats expérimentaux et proposer des améliorations.

L'étudiant devra être capable de :

- proposer une solution pour la réalisation d'un capteur intégrant les concepts décrit plus haut ;
- produire une expertise sur la conception et l¿élaboration d'un nano-capteur

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts):

Pré-requis nécéssaires

Master 1 de Physique générale ou appliquée, de Chimie

ou de Sciences des Matériaux ou équivalent

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

