

Résistance des Matériaux II

Présentation

Description

Théorie des poutres :

- Passage du système réel au modèle de type poutre : ligne moyenne et propriétés géométriques des sections, liaisons, chargement, matériau élastique linéaire ;
- Rappels de statique ¿ Equilibre ¿ Actions de liaison ¿ Isostaticité et hyperstaticité ;
- Efforts internes : effort normal, flexion, effort tranchant, torsion;
- Champs de contraintes / déformations / déplacements et énergie potentielle de déformation élastique associés aux différents efforts internes ;
- Méthodes de résolution de structures hyperstatiques (par application du principe de superposition et théorème de Castigliano).

Objectifs

A la fin de ce module, l¿étudiant sera capable d¿évaluer:

Le comportement mécanique des structures isostatiques et hyperstatiques de degré 1 de type « poutre » sous chargement statique :

Modéliser une structure de type « poutre » (caractéristiques géométriques, liaisons et chargements),

Calculer les actions de liaison et efforts internes,

Calculer les champs de contraintes, de déformations et

de déplacements associés à chaque type dieffort interne,

Calculer l'énergie potentielle de déformation élastique, Appliquer les méthodes de résolution pour structure hyperstatique de degré 1.

Pré-requis nécéssaires

Mécanique Sciences des matériaux Outils mathématiques

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

