

DOMAINE MATHEMATIQUES 1

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Analyse 1

Présentation

Description

Séries numériques

- 1. Introduction, Sommes partielles et techniques de sommation
- 2. Séries à termes positifs, théorème de comparaison
- 3. Séries à termes quelconques : convergence absolue, critère des séries alternées

Illustrations : notion d'erreur numérique, représentation des nombres en machine

Topologie des espaces vectoriels normés

- 1. Normes et EVN, Comparaison de normes
- 2. Suites dans un EVN et convergence
- 3. Topologie : ouverts, fermés, adhérence, densité
- 4. Limite, Continuité de fonctions, compacité
- 5. Applications linéaires entre EVN : continuité, normes subordonnées

Illustrations : méthodes itératives de résolution de systèmes linéaires, conditionnement de matrices

Calcul différentiel en dimension finie

- 1. Notion de différentielle pour les fonctions de plusieurs variables
- 2. Dérivées partielles d'ordre 1 et d'ordre supérieur
- 3. Développement de Taylor, Inégalité des accroissements finis
- 4. Théorème d'inversion locale, théorème des fonctions implicites.

Illustration numérique : Méthode de Newton pour la résolution de systèmes d'équations non linéaires.

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts) :

- La notion de série numérique et la notion convergence de série numérique.
- La notion de différentielle d'une fonction de plusieurs variables, de dérivée partielle et du lien avec la différentielle
- Les notions de normes, de convergence de suite dans un espace vectoriel normé, de limite, de notions topologiques simples : ouverts, fermés, compacité

L'étudiant.e devra être capable de :

Mobiliser les principaux théorème du cours pour :

- Etudier la convergence d'une série numérique par majoration, comparaison
- Etudier la différentiabilité d'une fonction de plusieurs variables, en faire un développement limité
- Manipuler la notion de norme, étudier la topologie d'un sous-ensemble d'un EVN, étudier la convergence de suites ou les limites de fonctions à valeurs dans un EVN.

Pré-requis nécéssaires

Cours d'analyse de 1ere année : fonctions, limite, continuité, dérivabilité en une dimension, algèbre linéaire (espaces vectoriels, applications linéaires, matrices, vecteurs)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Algèbre linéaire

Présentation

Description

Résolution de systèmes linéaires

- 1. Elimination de Gauss, Manipulation lignes/colonnes. Interprétation Matricielle
- 2. Critère d'existence de solution : noyau, rang, matrices à diagonale strictement dominante
- 3. Factorisation LU

Espaces préhilbertiens et euclidiens

- 1. Produit scalaire : exemples, propriétés
- 2. Orthogonalité : Pythagore, Bases orthogonales, Projection orthogonale
- 3. Applications : moindres carrés linéaires, factorisation OR

Réduction d'endomorphismes

- 1. Eléments propres : valeurs propres, vecteurs propres (à droite et à gauche), polynôme caractéristique
- 2. Diagonalisation, trigonalisation, lemme des noyaux, théorème de Cayley-Hamilton
- 3. Applications : systèmes différentiels et récurrences linéaires, calcul du spectre (méthode de la puissance)

Endomorphismes d'espaces euclidiens

- 1. Isométries, Matrices Orthogonales
- 2. Endomorphismes adjoints, auto-adjoints et réduction
- 3. SVD (application : visualisation de données)

Espaces hermitiens

- 1. Produit Hermitien, Orthogonalité
- 2. Endomorphismes d'espaces hermitiens (adjoint, réduction)

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts) :

- Connaître les principaux résultats de factorisation de matrice : LU, QR, SVD
- Connaître les principaux résultats de réduction de matrices
- Connaitre la notion de produit scalaire et d'orthogonalité
- Connaître la notion d'adjoint d'endomorphismes d'espace euclidiens, d'isométrie et d'endomorphismes auto-adjoints.

L'étudiant.e devra être capable de :

- Résoudre des systèmes linéaires par manipulation ligne colonne et savoir en donner une interprétation matricielle.
- Calculer une base orthogonale, une projection orthogonale
- Donner une interprétation matricielle des principales classes d'endomorphismes d'espaces euclidiens
- Diagonaliser et Trigonaliser des matrices simples.
- Résoudre un problème aux moindres carrés et appliquer une décomposition SVD numériquement.

Liste des compétences :

- 1_1 : Maitriser les concepts mathématiques et les outils calculatoires de l'ingénieur
- 1_2 : Mettre en place un raisonnement scientifique rigoureux et développer la capacité d'abstraction
- 2_1 :Maitriser les outils fondamentaux de l'ingénieur mathématicien

Pré-requis nécéssaires

Algèbre linéaire de première année : espaces vectoriels,

applications linéaires, matrices, notion d'image et de noyau d'une application linéaire

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

