

Mécanique des fluides

Présentation

Description

A partir du modèle complet de Navier Stokes, on développe les modèles restreints usuels découlements incompressibles tels que : Stokes (écoulement rampant), Euler (écoulement inertiel sans viscosité), Prandtl (couche limite laminaire) et Reynolds (écoulement turbulent). On décrit et applique les notions usuelles de mécanique des fluides suivantes : théorème d'Euler, théorème de Bernoulli, fluide parfait, écoulement irrotationnel, interaction fluide paroi (couche limite dynamique et thermique), coefficient de traînée. La turbulence est étudiée à travers la notion de viscosité turbulente, le profil universel de loi logarithmique, le modèle k-epsilon et les différentes échelles de la turbulence.

Objectifs

Acquérir les bases de la modélisation en mécanique des fluides pour comprendre le fonctionnement et dimensionner les dispositifs de laboratoire et les installations industrielles mettant en jeu écoulements.

- 1. Comprendre et appliquer les bilans globaux de masse et de quantité de mouvement sur un domaine géométrique
- 1. Comprendre le bilan d'énergie mécanique et appliquer le théorème de Bernoulli
- 2. Maîtriser les concepts de couches limites dynamique et thermique et utiliser les coefficients de transfert associés
- 3. Écrire un bilan de forces sur une inclusion en

choisissant la loi de traînée adéquate

- 4. Écrire et exploiter le profil universel de vitesse en écoulement turbulent
- 5. Estimer les échelles caractéristiques spatiales et temporelles de la turbulence en réacteur

Pré-requis nécéssaires

12BEMT10: Mathématiques

12BEBT10 : Bases de transfert

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

