

Equations aux dérivées partielles 1

Présentation

Description

Programme (contenu détaillé):

Modélisation par EDP (équations linéaires et en une dimension d'espace)

- 1. Équation de transport, équation des ondes
- 2. Équation de la chaleur
- 3. Équation de Schrödinger,...

Résolution exacte des équations aux dérivées partielles en dimension 1

- 1. Méthode des caractéristiques (transport, ondes)
- 2. Séparation de variables (chaleur, wave, Schrödinger,...), utilisation de la linéarité (principe de superposition) et lien avec les séries de Fourier
- 3. Transformée de Fourier
- 4. Phénomènes dissipatifs et dispersifsMéthode des différences finies en dimension 1
- 1. Consistance, ordre des méthodes, stabilité, convergence des schémas
- 2. Condition de Courant-Friedrichs-Levy (CFL)

L'étudiant.e devra être capable de :

- Résoudre les équations aux dérivées partielles linéaires en dimension 1 (méthode des caractéristiques, séparation de variable, principe de superposition, transformée de Fourier)
- Mettre en œuvre la méthode des différences finies en dimension 1 et coupler cette méthode aux méthodes de résolutions d'équations différentielles pour résoudre des équations aux dérivées partielles.

Liste des compétences :

- 1_1 Maitriser les concepts mathématiques et les outils calculatoires de l'ingénieur
- 1_3 Mettre en place un raisonnement scientifique rigoureux et développer la capacité d'abstraction
- 2_1 Maitriser les outils fondamentaux de l'ingénieur mathématicien
- 2_2 Mettre en œuvre et valider des modèles mathématiques avancés et des solutions numériques adaptées
- 3_1 Formuler et modéliser des problèmes notamment dans les systèmes complexes

Vous pouvez vous aider de la matrice de compétences de la CTI de 2019.

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts) :

- Les modèles d'EDP linéaires classiques en dimension 1 (chaleur, transport, ondes, ...), leur résolution exacte et le comportement qualitatif de leurs solutions
- La méthode de résolution numérique des Différences Finies en dimension 1

Pré-requis nécéssaires

Cours Algèbre Linéaire (MIC2 S3) : manipulation matricielle, valeurs propres et éléments propres, résolution des équations différentielles linéaires Cours Équations différentielles ordinaires : modélisation par EDO, existence de solutions, étude qualitative, simulation numérique (convergence, stabilité, ordre de convergence)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse