

Systèmes dynamiques

Présentation

Description

Programme (contenu détaillé):

- Définition d'une EDO autonome, définition d'un problème de Cauchy, théorème de Cauchy -Lipschitz
- Définition de la durée de vie et de la solution maximale, analyse de la stabilité
- Propriétés qualitatives : intégrale première, fonction de Lyapunov, introduction aux bifurcations (+ cycles limites)
- Principe de construction des portraits de phase en dimension 1 et 2
- Intégration numérique d'une EDO (schémas d'Euler, RK, Crank-Nicholson)
- Analyse d'un schéma numérique : stabilité, consistence et convergence

Les notions évoquées ci-dessus seront introduites dans le cadre de l'étude et l'analyse de 4 systèmes dynamique utilisés comme fil rouge du cours.

Objectifs

A la fin de ce module, l'étudiant.e saura

- Définir un problème de Cauchy et montrer la bonne position d'une équation différentielle autonome
- Obtenir des propriétés qualitatives sur la solution d'une équation différentielle ordinaire autonome (solution maximale, durée de vie, stabilité)
- Tracer le portrait de phase d'une équation différentielle ordinaire autonome système en dimension

1 et 2

- Résoudre par intégration numérique une équation différentielle ordinaire autonome
- Appliquer ces notions à l'étude de plusieurs systèmes dynamiques issus notamment de la physique, de la biologie et de la dynamique des populations

Liste des compétences : 1_1,1_2,1_3, 2_1,2_2

Pré-requis nécéssaires

Calcul différentiel et Calcul intégral, Algèbre linéaire

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

0

Toulouse

