

Méthodes MCMC

Présentation

Description

Programme (contenu détaillé):

- Simulation de variables et vecteurs aléatoires : nombres pseudo-aléatoires, simulation par inversion de la fonction de répartition, par rejet et méthodes de simulation spécifiques.
- Méthodes de Monte-Carlo classiques implémentation, réduction de variance par différentes variable méthodes (par de contrôle, échantillonnage préférentiel, méthode des variables antithétiques).
- Méthodes de Monte Carlo par chaînes de Markov : rappels sur les chaînes de Markov, loi des grands nombres markovienne, algorithme de Metropolis-Hastinas.
- Mise en pratique avec le logiciel Python.

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts):

- Les principes fondamentaux de la simulation de variables et vecteurs aléatoires.
- Les méthodes classiques de réduction de variance dans l'approximation d'intégrales par la méthode de Monte Carlo.
- L'approximation d'intégrales par la méthode de Monte Carlo à base de chaînes de Markov.

L'étudiant.e devra être capable de :

- Simuler une variable aléatoire réelle par inversion.
- Simuler un vecteur aléatoire par rejet.

- Maîtriser les techniques de réduction de variance (par variable de contrôle, par échantillonnage préférentiel, méthode des variables antithétiques).
- Utiliser l'algorithme de Metropolis-Hastings générant une chaîne de Markov réversible et ergodique de probabilité invariante prescrite a priori.

Pré-requis nécéssaires

Probabilités et Statistique (2MIC Semestre 4). Probabilités et analyse de données (3MIC Semestre 5). Compléments de probabilités (3MIC MA Semestre 5).

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

