

3e ANNEE MIC ORIENTATION IR SEMESTRE 5

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Optimisation et programmation linéaire

Présentation

Description

Programme (contenu détaillé):

- Introduction à l'optimisation sous contrainte : définitions et généralités, questions d'existence de solutions, convexité et unicité
- Conditions d'optimalité : conditions du premier et du second ordre en optimisation différentiable sans contrainte, conditions de Karush-Kuhn-Tucker (KKT) en optimisation différentiable avec contraintes, notion de Lagrangien
- Algorithmes pour l'optimisation sans contrainte : algorithme du gradient (pas fixe, pas optimal), algorithme de Newton, problèmes de moindres carrés linéaires et non linéaires
- Introduction à l'optimisation sous contraintes linéaires : formalismes de modélisation, caractérisation de l'espace de recherche, interprétation géométrique, résolution graphique, lien avec les conditions de KKT, algorithme du simplexe, méthode des dictionnaires, complexité, dualité d'un problème de PL, théorèmes de dualité forte et faible, théorèmes des écarts complémentaires, lemme de Farkas, théorème des alternatives

Polycopiés de cours détaillés fournis.

Mots clés : optimisation différentiable, conditions d'optimalité du premier et du second ordre, algorithmes du gradient, Newton, problèmes de moindres carrés, programmation linéaire et algorithme du simplexe.

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts) :

- Les notions d'extremum local et de convexité
- Caractérisation d'un extremum local par des conditions d'optimalité : conditions du premier et du second ordre en optimisation différentiable sans contrainte, conditions de Karush-Kuhn-Tucker (KKT) en optimisation différentiable avec contrainte.
- Les premiers algorithmes pour l'optimisation sans contrainte : algorithme du gradient (pas fixe, pas optimal), algorithme de Newton, problèmes des moindres carrés linéaires et non linéaires.
- L'optimisation sous contraintes linéaires (Programmation linéaire/PL): modélisation en PL, caractérisation de l'espace de recherche, interprétation géométrique, principe de résolution, algorithme du simplexe, méthodes des dictionnaires, complexité, dualité.

L'étudiant devra être capable de :

Choisir et mettre en œuvre et implémenter une méthode d'optimisation pertinente et numériquement efficace pour un problème d'optimisation différentiable sans contrainte ou pour un problème de programmation linéaire.

Liste des compétences : 1.1, 1.3, 1.4, 2.1, 2.5, 3.1

Pré-requis nécéssaires

Calcul différentiel : savoir calculer un gradient et une hessienne. Lien avec la différentielle

Algèbre linéaire : savoir diagonaliser une matrice, calculer les valeurs propres, notion de semi-définie positivité.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Système d'exploitation

Présentation

Description

Le système d'exploitation est vu comme un gestionnaire de ressources : gestion des processeurs (processus, ordonnancement), gestionnaire de la mémoire (mémoire virtuelle, allocation), accès aux ressources (synchronisation, exclusion mutuel) et système de fichiers.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Systèmes d'exploitation :

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer la problématique des systèmes d'exploitation avec une vue générale des fonctions et de l'architecture des systèmes d'exploitation.

Pré-requis nécéssaires

- Notions sur la structure des ordinateurs

Algorithmique avancée

Présentation

Algorithmique et programmation (1A et 2A)

Description

Preuves de correction Analyse asymptotique Diviser pour régner Algorithmes gloutons Programmation dynamique Méthode branch and bound Tractabilité des problèmes

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

L'objectif de ce cours est d'introduire les bases de la complexité et de maîtriser des méthodes de conception algorithmique avancées. Tout au long du cours, les étudiants apprendront à analyser la tractabilité des problèmes ainsi que la correction et la complexité des algorithmes. Ils seront initiés à des techniques avancées de conception algorithmique, telles que le diviser pour régner, les algorithmes gloutons, la programmation dynamique et la méthode branch and bound.

Pré-requis nécéssaires

Bases de données 2

Présentation

Description

L'objectif de ce cours, est l'étude des bases de données relationnelles. Les concepts fondamentaux du modèle relationnel sont étudiés. Ensuite, l'accent est mis sur l'algèbre relationnelle et le langage SQL pour la manipulation et l'interrogation des bases de données.

Objectifs

A la fin de ce module, l'étudiant devra avoir compris et pourra expliquer (principaux concepts).

- Le modèle relationnel
- Les contraintes d'intégrité des données
- Les langages de manipulation et d'interrogation des bases de données relationnelles, en particulier l'algèbre relationnelle et le

langage SQL

En pratique, l'étudiant devra être capable de :

- Implémenter une base de données conçue tout en garantissant les contraintes d'intégrité
- Ecrire des requêtes en algèbre relationnelle puis les implémenter en SQL pour la manipulation et l'interrogation des bases de données relationnelles

Pré-requis nécéssaires

Algorithmique pour Programmation Web

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

0

Chaînes de Markov

Présentation

Description

Chaînes de Markov homogènes à espace d'états discret et leur classification : définition et propriétés de classe (irréductibilité, récurrence, transience, période), mesure réversible, mesure invariante et convergence vers la loi invariante, temps de retour à un état, temps d'absorbtion.

Objectifs

Chaînes de Markov : Chaîne de Markov homogène à espace d'états discret, classification des états, mesure invariante, chaine de Markov réversible, convergence vers la loi invariante, théorème ergodique.

Chaines de Markov:

Passer de la description d'un modèle markovien à sa formalisation par une chaîne de Markov

Mener l'étude d'une chaine de Markov (description des classes de communication, conclure sur l'existence d'une mesure invariante et sur la convergence de la loi de la chaine).

Notions de réduction des endomorphismes de 1A, de séries numériques et de probabilités discrètes de 2A.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Analyse de données

Présentation

Description

- Statistique descriptive unidimensionnelle
- Statistique descriptive bidimensionnnelle
- · Analyse en composantes principales
- · Principe du clustering, classification hiérarchique, Kmeans, DBSCAN
- · Initiation à la programmation en R et utilisation de Rmarkdown

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts):

- bases des statistiques descriptives unidimensionnelles et bidimensionnelles
- · les principes théoriques et les résultats numériques issus de l'analyse en composantes principales
- · le principe du clustering, les méthodes de classifications hiérarchiques, les Kmeans, DBSCAN et les résultats numériques

L'étudiant.e devra être capable de :

- mener une analyse de statistique descriptive avec le logiciel R et rédiger un rapport avec Rmarkdown
- manipuler les principes de l'analyse en composantes principales, maîtriser les principales propriétés et interpréter les résultats

Pré-requis nécéssaires

Probabilités et Statistiques (2MIC)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Bases de données 1 et Programmation web

Présentation

Description

Bases de données 1:

L'objectif de ce cours, est l'étude des bases de données relationnelles. Le but est d'introduire les concepts fondamentaux de la conception des bases de données relationnelles. Pour cela, le langage choisi est l'UML. A partir du modèle de données UML, le processus de dérivation et de normalisation du modèle relationnel sera étudié.

Programmation Web Les langages HTML5, CSS, JavaScript seront étudiés.

Organisation (déroulement) : Bases de données 1 :

10h de cours suivis de 10h de TDs.

Technologies Web 5h de cours, suivis de 7,5h de TDs, suivis de 8,25h de TP

Des cours magistraux accompagnés de supports de cours sont donnés aux étudiants. Des travaux dirigés sont adossés aux cours magistraux durant lesquels les étudiants vont exercer les différents concepts vus en cours. Les dernières séances des travaux dirigés sont consacrées à l'introduction et à l'étude d'un cahier des charges dans le cadre d'un projet. Finalement, durant les travaux pratiques, les étudiants réalisent leur projet. A l'issue de ces travaux pratiques, les étudiants fournissent un rapport et les codes sources.

Objectifs

A la fin de ce COURS, l'étudiant devra avoir compris et pourra expliquer (principaux concepts) :

Bases de données 1

- Les différents modèles de bases de données qui existent, leurs avantages et leurs inconvénients
- Le rôle d'un SGBD (Système de gestion de base de données)
- Le modèle conceptuel de données basé sur le langage I JMI
- Les différents concepts du modèle relationnel
- L'importance et le principe de la normalisation

Programmation Web

- Comprendre les concepts des technologies du Web
- Le langage HTML5
- Le langage CSS
- Le langage JavaScript

L'étudiant devra être capable de :

Bases de données 1

- Analyser un cahier des charges pour la conception et l'implémentation d'une base de données
- Concevoir une base de données relationnelle en UML via les diagrammes de classe
- Dériver le modèle relationnel à partir du modèle conceptuel UML et vice versa
- Valider et normaliser un modèle relationnel

Programmation Web

- Concevoir un site Web statique en HTML5
- Définir des feuilles de style CSS
- Définir des script JavaScript

Pré-requis nécéssaires

Algorithmique pour Programmation Web

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Réseaux

Présentation

l'architecture des réseaux locaux Ethernet et de l'Internet TCP/IP seront maîtrisés sur le plan théorique à l'issu du cours.

Description

dυ première partie introduit cours caractéristiques des principales applications d'un réseau.

La seconde partie détaille les notions fondamentales associées à la conception d'un réseau : connectivité, partage des ressources, commutation, qualités de service et architecture.

La troisième partie décrit l'architecture des réseaux locaux avec étude de cas aux réseaux Ethernet.

Des illustrations de ces concepts sont étudiées en travaux dirigés et en travaux pratiques.

Objectifs

A la fin de ce module :

L'étudiant/e connaitra et pourra expliquer les principaux concepts associés aux informatiques (réseaux personnels, locaux ou grande distance et leur interconnexion dans le cadre Internet (TCP/IP).

II/elle d'identifier sera ainsi capable caractéristiques des principales applications distribuées dans les réseaux, les différents types de connectivité et de schémas d'adressage au sein des réseaux, les solutions de partage des ressources et leurs conséquences sur la qualité des transferts (perte, déséquencement, délai, débit), et enfin les notions de service, de protocole, d'architecture et de qualité de service.

De façon plus spécifique, les services, fonctionnalités et principaux mécanismes des protocoles impliqués dans

Pré-requis nécéssaires

Notions sur les systèmes d'exploitation et sur la programmation C.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Théorie de l'information et du codage

Présentation

probabilités et arithmétique modulaire.

Description

- Paradigme de Shannon, quantité d'information, entropie
- Compression de données avec et sans perte d'information
- Codes linéaires correcteurs d'erreurs
- Cryptographie classique, contemporaine et postquantique

Objectifs

L'objectif du cours est d'introduire les principes fondateurs de la théorie de l'information avec ses applications en compression de données, codes correcteurs et cryptographie.

A la fin de cet enseignement l'étudiant sera capable :

- d'appliquer les principes de la théorie de l'information pour évaluer, quantifier et dimensionner des algorithmes pour la compression de données ainsi que la détection et la correction d'erreur.
- d'appliquer des algorithmes de chiffrement cryptographiques standards pour le transfert confidentiel d'information.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Pré-requis nécéssaires

Mathématiques de base en algorithmique, repréentation de l'information, algèbre linéaire,

Transition Ecologique, Réduction des GES, Responsabilité et Environnement (TERRE)

Présentation

Description

L'enseignement comprend un atelier « 2 tonnes », qui permet d'appréhender de manière ludique les ordres de grandeurs liés aux objectifs de neutralité carbone en 2050. Il comprend également des T.D. sur les thématiques suivantes : habitat ; production d'électricité ; inégalités et responsabilités ; mobilités ; discours de l'inaction climatique ; agriculture et alimentation; aéronautique. Les étudiants travaillent également sur une problématique complexe liée aux enjeux écologiques, et démarrant leurs réflexions à partir d'un objet ou service de la vie quotidienne.

Objectifs

A la fin de ce module, l'étudiant devra être capable de :

- 🛚 Être à l'aise avec les concepts fondamentaux liés aux émissions GES (gaz à effet de serre), et être capable de faire des calculs simples à ce sujet.
- X Connaître l'ordre de grandeur des grandeurs
- A Être capable d'aller chercher des valeurs d'émission dans la base de données de l'ADEME et de les utiliser à bon escient
- X Penser les enjeux écologiques dans toutes leur complexité et étudier une problématique précise

- X Avoir des notions sur l'analyse de cycle de vie et la mettre en œuvre
- X Être capable de faire des recherches dans la littérature scientifique
- XÊtre capable de comprendre et analyser des figures/données
- X Tirer des conclusions politiques à partir de faits scientifiques et de ses propres valeurs
- A Débattre, discuter et confronter les points de vue

Pré-requis nécéssaires

Notions de base sur l'énergie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Technique de recherche d'emploi

Présentation

Niveau C1 min. en français. Cours non ouvert aux étudiants d'échange

Description

Les étudiants réaliseront un bilan personnel, perfectionneront leur CV et lettre de motivation en français et en anglais, et apprendront à rechercher des informations sur les entreprises et le marché de l'emploi. Ils exploreront les techniques de recrutement modernes, les réseaux professionnels et Internet, et créeront un profil LinkedIn. Des simulations d'entretien seront proposées pour un stage, et des annonces en français et en anglais seront analysées. L'introduction aux méthodes de recrutement anglo-saxonnes sera également abordée.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Toulouse

Objectifs

TRE (français):

Développement des compétences pour rechercher des stages ou emplois (bilan personnel, outils de recherche, CV et lettres de motivation adaptés, analyse d'offres en français, préparation aux entretiens, communication interculturelle).

Pré-requis nécéssaires

Job Search

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Cours électif

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

APS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

