

DOMAINE MATHEMATIQUES_9 ECTS

Présentation

Description

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Systèmes dynamiques

Présentation

Description

Programme (contenu détaillé):

- Définition d'une EDO autonome, définition d'un problème de Cauchy, théorème de Cauchy -Lipschitz
- Définition de la durée de vie et de la solution maximale, analyse de la stabilité
- Propriétés qualitatives : intégrale première, fonction de Lyapunov, introduction aux bifurcations (+ cycles limites)
- Principe de construction des portraits de phase en dimension 1 et 2
- Intégration numérique d'une EDO (schémas d'Euler, RK, Crank-Nicholson)
- Analyse d'un schéma numérique : stabilité, consistence et convergence

Les notions évoquées ci-dessus seront introduites dans le cadre de l'étude et l'analyse de 4 systèmes dynamique utilisés comme fil rouge du cours.

Objectifs

A la fin de ce module, l'étudiant.e saura

- Définir un problème de Cauchy et montrer la bonne position d'une équation différentielle autonome
- Obtenir des propriétés qualitatives sur la solution d'une équation différentielle ordinaire autonome (solution maximale, durée de vie, stabilité)
- Tracer le portrait de phase d'une équation différentielle ordinaire autonome système en dimension

1 et 2

- Résoudre par intégration numérique une équation différentielle ordinaire autonome
- Appliquer ces notions à l'étude de plusieurs systèmes dynamiques issus notamment de la physique, de la biologie et de la dynamique des populations

Liste des compétences : 1_1,1_2,1_3, 2_1,2_2

Pré-requis nécéssaires

Calcul différentiel et Calcul intégral, Algèbre linéaire

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

0

Compléments de probabilités

Présentation

Description

Programme (contenu détaillé):

- Tribu, tribu engendrée par une ou plusieurs variables aléatoires.
- Espérance conditionnelle par rapport à une tribu engendrée par une partition puis par rapport à une tribu générale. Propriétés principales des espérances conditionnelles.
- Vecteurs gaussiens. Propriétés principales, miracle gaussien pour l'indépendance des coordonnées, théorème de projection des vecteurs gaussiens, théorème central limite multi-dimensionnel, théorème de Cochran.
- Inégalités classiques en théorie des probabilités : inégalités de Markov, de Chebyshev, de Cauchy-Schwarz et de Hölder.
- Modes de convergence des variables aléatoires : presque sûre, en probabilité, en loi, dans les espaces Lp, et liens entre ces convergences.

L'étudiant.e devra être capable de :

- Calculer une espérance conditionnelle par rapport à une tribu donnée.
- Montrer qu'un vecteur aléatoire est un vecteur gaussien et expliciter précisément les paramètres sousjacents (vecteur espérance et matrice de covariance) ; utiliser les propriétés spécifiques aux vecteurs gaussiens.
- Utiliser les inégalités classiques en théorie des probabilités.
- Montrer qu'une suite de variables aléatoires donnée converge (ou pas) presque sûrement, en probabilité, en loi ou dans les espaces de Lebesque (espaces Lp).

Liste des compétences :

- 1_1 : Maitriser les concepts mathématiques et les outils calculatoires de l'ingénieur
- 1_3 : Mettre en place un raisonnement scientifique rigoureux et développer la capacité d'abstraction
- 2_1 : Maîtriser les outils fondamentaux de l'ingénieur mathématicien
- 2_3 : Appréhender l'aléa et modéliser les incertitudes

Objectifs

A la fin de ce module, l'étudiant.e devra avoir compris et pourra expliquer (principaux concepts) :

- La notion de tribu engendrée par une ou plusieurs variables aléatoires.
- La définition et les propriétés principales d'une espérance conditionnelle.
- La définition et les propriétés principales d'un vecteur gaussien.
- Les différents modes de convergence en théorie des probabilités, et les liens qu'ils entretiennent.

Pré-requis nécéssaires

Cours de Probabilités et Statistique (2MIC Semestre 4)

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

Transition Ecologique, Réduction des GES, Responsabilité et Environnement (TERRE)

Présentation

Description

L'enseignement comprend un atelier « 2 tonnes », qui permet d'appréhender de manière ludique les ordres de grandeurs liés aux objectifs de neutralité carbone en 2050. Il comprend également des T.D. sur les thématiques suivantes : habitat ; production d'électricité ; inégalités et responsabilités ; mobilités ; discours de l'inaction climatique ; agriculture et alimentation ; aéronautique. Les étudiants travaillent également sur une problématique complexe liée aux enjeux écologiques, et démarrant leurs réflexions à partir d'un objet ou service de la vie quotidienne.

Objectifs

A la fin de ce module, l'étudiant devra être capable de :

- Il Être à l'aise avec les concepts fondamentaux liés aux émissions GES (gaz à effet de serre), et être capable de faire des calculs simples à ce sujet.
- X Connaître l'ordre de grandeur des grandeurs importantes
- Il Être capable d'aller chercher des valeurs d'émission dans la base de données de l'ADEME et de les utiliser à bon escient
- N Penser les enjeux écologiques dans toutes leur complexité et étudier une problématique précise

- $\mbox{\ensuremath{\upomega}{\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath}\ensuremath{\upomega}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensu$
- X Être capable de faire des recherches dans la littérature scientifique
- XÊtre capable de comprendre et analyser des figures/données
- X Tirer des conclusions politiques à partir de faits scientifiques et de ses propres valeurs
- X Débattre, discuter et confronter les points de vue

Pré-requis nécéssaires

Notions de base sur l'énergie.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Infos pratiques

Lieu(x)

