

## **Energy Mix and Transition**

# Introducing

decarbonization?

#### Description

The main concepts covered during the course are: conversion, transport, storage and usage efficiencies / power flux density / material resource intensity / load factor / stock and flow concepts / production and demand profiles / networking / energy mix / energy transition scenarios for 2050.

The course covers the following technologies: wind generation, electrolytic storage (H2), photovoltaics, electrochemical batteries, hydroelectricity / WWTP, fossil-nuclear-biomass power stations, biogas production.

### **Objectives**

To understand the stakes involved in supplying energy to our production system.

To be able to answer the following questions:

- How do we obtain our energy today (knowing the different means of conversion and storage, and the different mixes)?
- What are the orders of magnitude for our individual and national energy consumption on a day-to-day basis?
- Where are the dependencies, weaknesses and limits of our energy supply ?
- How can we build an energy mix that meets our demand profile up to 2050 and the challenge of

#### Necessary prerequisites

Be familiar with the concepts of electrical power and energy, as well as the general concepts of efficiency and density.

Have acquired the knowledge and skills of the first year at INSA, especially in electrokinetics, mechanics and thermodynamics.

#### Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

## Practical info

#### Location(s)

0

Toulouse

