

Continuous automatics

Introducing

some controller (elementary corrections, PI, PID, phase lead)

Description

This course deals with the modeling, analysis and control of continuous linear systems. It presents the classical methods of frequency automata. They are based on the transfer function representation, obtained from the Laplace transform. The stability property and their temporal and frequency responses, in the form of Bode and Nyquist diagrams, are studied. We analyze the performance of a servo system, in terms of accuracy, transient regime and stability margins. Finally, the synthesis of correctors is approached by studying the effects of elementary corrections, before combining them to set PI, PID and phase lead controller.

Évaluation

L'évaluation des acquis d'apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs...

Practical info

Location(s)

Toulouse

Objectives

At the end of this module, the student should have understood and be able to explain the main concepts of the automatic control of continuous linear systems:

- model a continuous linear system in the form of transfer functions and block diagrams
- calculate the time and frequency responses of a continuous linear system, and analyze its stability
- analyze the main properties of a servo system (stability, transient regime, accuracy and stability
- synthesize, using the classical frequency method,

