– Probability spaces
– Conditional probability and independence
– Random variables (discrete or continuous) and their characteristics
– Multidimensional random variables, conditional
distributions and independence
– Limit theorems (LLN and CLT) and approximation of laws
– Statistical estimation, both punctual and using confidence intervals
Probability-Statistics
Description
Objectifs
At the end of this module, the student should have understood and be able to explain (main concepts): - what a probability space is - to compute probabilities using Bayes formula
- the notion of conditional probability and
independence between events
- what a random variable (discrete or continuous)
and its characteristics are
- how to apply limit theorems such as the Law of
Large Numbers (LLN) or the Central Limit Theorem
(CLT)
- the notion of statistical estimation
The student will be able to:
- to determine the law of a random variable, to
compute its expectation, variance, cumulative distributive and characteristic
functions, etc
- to study the independence of random variables
- to approximate distributions by using underlying
limit theorems
- to estimate using confidence intervals some unknown parameters (expectation, variance, proportion) associated to a large population
Pré-requis
Basic set theory, summations and series, derivation, integration (both simple and multiple), improper integrals, equivalents and limit computations.
Évaluation
L’évaluation des acquis d’apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs…
En bref
Crédits ECTS :
Nombre d’heures :
INSA Toulouse
135 avenue de Rangueil
31077 Toulouse cedex 4
Tél : 05 61 55 95 13
Fax : 05 61 55 95 00
Dans un souci d'alléger le texte et sans aucune discrimination de genre, l'emploi du genre masculin est utilisé à titre épicène.










