Objectifs
At the end of this module, the student should have understood and be able to explain (main concepts):
- what a probability space is
- the notion of conditional probability and independence between events
- what a random variable (discrete or continuous) and its characteristics are
- how to apply limit theorems such as the Law of Large Numbers (LLN) or the Central Limit Theorem (CLT)
The student will be able to:
- to compute probabilities using Bayes formula
- to determine the law of a random variable, to compute its expectation, variance, cumulative distributive and characteristic functions, etc
- to study the independence of random variables
- to approximate distributions by using underlying limit theorems
Pré-requis
Basic set theory, summations and series, derivation, integration (both simple and multiple), improper integrals, equivalents and limit computations.
Évaluation
L’évaluation des acquis d’apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs…