Analysis and data processing, business applications
Description
Objectifs
At the end of this module, the student will have understood and be able to explain (main concepts):
Data management:
Exploratory/confirmatory data analysis. Algorithmic
Complexity vs. development costs, parallelism, software engineering notions (life cycle of a data analysis pipeline).
Data visualisation techniques.
Semantic manipulation:
- What an ontology is
- What are the main constituting elements of an ontology
- What are the perks of enriched data compared to raw data
Software engineering:
- Software project lifecycle
- The challenges of software development
- Project management methods, including agile method
The student will be able to:
- Explore a dataset, leverage it to answer specific questions, and present the results of this analysis -incl. Its limits- in a synthetic written report.
- Design an ontology to capture domain knowledge
- Discover and reuse knowledge sources (ontologies, knowledge bases) online
- Enrich a dataset with semantic metadata
- Control the conduct of a software development project with a team by following the agile method
- Perform requirement analysis: expression, analysis and transformation into technical requirements
Pré-requis
- Algorithms and programming
- Statistics (notions)
- Java programming
- Web technologies background knowledge
Évaluation
L’évaluation des acquis d’apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs…
En bref
Crédits ECTS : 4.0
Nombre d’heures : 37.0

INSA Toulouse
135 avenue de Rangueil
31077 Toulouse cedex 4
Tél : 05 61 55 95 13
Fax : 05 61 55 95 00

Dans un souci d'alléger le texte et sans aucune discrimination de genre, l'emploi du genre masculin est utilisé à titre épicène.