Objectifs
At the end of this module, the student will have understood and be able to explain (main concepts):
- Statistical analyses of multidimensional data: dimension reduction and clustering with R
- Statistical interpretation of various graphical displays including the different kinds of factor analyses and clustering.
At the end of this module, the student should be able to:
- Manage an exploratory analysis on a dataset using R software and write a report using Rmarkdown
- Explain and apply PCA, MCA, MFA, MDS, LDA
- Explain and apply clustering methods: Kmeans and its variants, hierarchical clustering, DBSCAN and mixture models
Pré-requis
Statistics: descriptive statistics
Probability: random vectors, probability distribution, Bayes law, multivariate normal distribution.
Algebra: vector spaces, Euclidean spaces, matrix calculus, eigenvalue decomposition.
Geometry / mecanics: barycenter, inertia, Huygens formula.
Évaluation
L’évaluation des acquis d’apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs…