Resolution of linear systems
1. Gauss elimination. Manipulation of rows and columns. Matrix interpretation
2. Existence criterion: rank, kernel, strictly dominant diagonals
3. LU factorization
Prehilbertian and Euclidian spaces
1. Scalar product: examples, properties
2. Orthogonality: orthogonal basis, projections
3. Mean Square solution of linear systems, QR factorization
Reduction of endomorphisms
1. Eigen-elements: eigenvalues, eigenfunctions, characteristic polynom
2. Diagonalisation, trigonalisation, Cayley-Hamilton
3. Applications: linear differential systems and recurrences, spectrum computation
Endomorphisms of Euclidian spaces
1. Isometries, Orthogonal Matrices
2. Adjoint, Self-adjoint endomorphisms, diagonalization
3. Singular Value Decomposition (data visualization)
Hermitian spaces
1. Hermitian product, Orthogonality
2. Endomorphisms of Hermitian spaces: adjoint, reduction.
Objectifs
At the end of this module, the student will have understood and be able to explain (main concepts):
- Knowing main factorization results on matrices: LU, QR, SVD
- Main results on diagonalization and trigonalization
- Orthogonality
- Adjoint of a matrix, self-adjoint matrices and spectral theorem, Isometries
The student will be able to:
- Solve linear system with Gauss elimination and give a matrix interpretation
- Compute orthogonal basis or orthogonal projection on a subspace
- Provide a matricial interpretation of the main classes of Euclidian endomorphisms
- Diagonalize or trigonalize matrices
- Solve numerically a linear system in a mean square sense. Apply numerical SVD.
Pré-requis
Basic linear algebra: vector spaces, subspaces, linear application, matrix, Kernel and Image of a linear application
Évaluation
L’évaluation des acquis d’apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs…