Stochastic Processes:

Description

Program (detailed contents):

Time series
– Introduction and Descriptive Analysis: Time series decomposition, Estimation and Elimination of Trend and Seasonal Components
– Random Modeling of Time Series: Stochastic process, stationnarity, Autocovariance Function
– Statistical Inference of Stationary processes of order 2: Moment Estimation, Best linear predictor, Partial autocorrelation, statistical tests
– ARMA and ARIMA Models: AR process, MA process, ARMA et ARIMA processes

The practical labworks will be performed with R software.

Poisson processes and application to reliability and actuarial science 
1st part: Theoretical foundations
– Probability distributions in reliability theory, hazard rate, memoryless distributions
– Introduction to homogeneous Poisson processes: definitions, fundamental properties, and simulation methods
– Inferential statistics for the homogeneous Poisson process (likelihood, estimation of the rate, confidence intervals, statistical tests)
– Introduction to inhomogeneous Poisson processes: definition, fundamental properties, simulation methods, and likelihood

2nd part: Mini projects
Application and illustration of different aspects of the Poisson process on real and/or simulated data in reliability theory or actuarial science (e.g. Cramér-Lundberg model)

The practical labwork and the projects will also be performed with the R software.

Objectifs

At the end of this module, the student will have understood and be able to explain (main concepts):

Time series
- Trend and seasonality of a time series
- Definitions and properties of stationary processes
- The autocovariogram and autocorrelograms (total and partial) of a stationary process
- The ARMA and ARIMA models

 Poisson processes and application to reliability and actuarial science
- Homogeneous and inhomogeneous Poisson processes
- Statistical inference for homogeneous Poisson processes

The student will be able to: 

Time series
- Estimate or eliminate the trend and/or the seasonality of a time series.
- Study the stationnarity of a time series.
- Calculate and estimate the autocorrelogram and the autocorrelograms (total and partial) of a stationary process.
- Study and/or adjust an ARMA (or ARIMA) model on a stationary time series.
- Carry an optimal linear forecast of an ARMA process.
- Apply these concepts using R software

Poisson processes and application to reliability and actuarial science
- Know and understand the (homogeneous and inhomogeneous) Poisson process theory fundamentals.
- Estimate the rate of a homogeneous Poisson process and construct confidence intervals and statistical tests for such rate (theoretically and in practice with the R software)
- Draw at random (homogeneous and inhomogeneous) Poisson processes using different methods
- Model the recursive occurrences of the failures on a system, or the claim times in Insurance by Poisson processes

Pré-requis

- Probability and Statistics  (L2/2MIC)
- Probability and Data Analysis  (L3/3MIC)
- Inferential Statistics (L3/3MIC)
- Statistics Modelling (M1/4MA)

Évaluation

L’évaluation des acquis d’apprentissage est réalisée en continu tout le long du semestre. En fonction des enseignements, elle peut prendre différentes formes : examen écrit, oral, compte-rendu, rapport écrit, évaluation par les pairs…

En bref

Crédits ECTS :

Nombre d’heures :

EN 1 Clic

Annuaire

ENT

Rejoindre
les équipes

Marchés publics

Soutenir l'excellence

Fondation
INSA
Taxe
apprentissage

INSA Toulouse
135 avenue de Rangueil
31077 Toulouse cedex 4
Tél : 05 61 55 95 13
Fax : 05 61 55 95 00

Logo Communauté d'universités et établissements de Toulouse
Logo Bienvenue En France

Dans un souci d'alléger le texte et sans aucune discrimination de genre, l'emploi du genre masculin est utilisé à titre épicène.

INSA Toulouse
Résumé de la politique de confidentialité

Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.
En cliquant sur "Accepter", vous acceptez l'utilisation de cookies en provenance de ce site ainsi que notre politique de protection des données personnelles.